Synapse

Modular interfacing and conversion

Committed.

About us

AXON is committed to developing products that meet customer requirements in an industry that forever changes. As a company of ideas, innovation and solid engineering, we champion progress. We're proud that major players in broadcasting worldwide choose our state-of-the-art modular systems to serve the wide range of their audio and video signal processing demands – in OB trucks, studios and transmission and play-out facilities.

AXON customers often build their technology infrastructures around our systems – but we are driven purely by their needs and their success. Our tradition, of long-term cooperation and intimate collaboration with customers, helps us to deliver ever-more reliable, cost-effective and spacesaving products that have a big impact in the machine room, and to the bottom line.

This is what sets us apart, and what Synapse is all about. Within a range of modestly-sized frame options come an amazing array of possibilities, all easily tailored to meet your particular application requirements. Synapse enables you to seamlessly transition between analog and digital platforms – right up to 3Gb/s – with the pleasing possibility of impressive comparative cost savings in the mix.

Being flexible, extendable and intuitive, Synapse is equally at home with straightforward procedures as it is in the most exacting of broadcasting environments. What's more, our commitment to R&D means that whatever occurs next in the world of signal processing, Synapse will keep you ahead.

AXON supports customers worldwide. A growing business, we are headquartered in The Netherlands, and now have offices in the UK, Dubai and China. We also work hand-in-hand with over 50 distributors and experienced local systems integrators around the globe.

Ultimately, we enjoy to being a great company to do business with. The passion, commitment and vision of our team keep AXON focused on meeting today's demands and the challenges of the future.

AXON headquarters

The Netherlands

Index

	Page(s)					
About us						
Greater than the sum of the cards						
Index of modules	4					
Synapse highlights	8					
1 Most versatile system in the broadcast industry	10					
1.1 Three frames, one form-factor	12					
■ 1.2 Cooling	12					
1.3 Cortex setup, monitoring and control software	14					
1.4 Local control directly into the frame	23					
1.5 SPC08 Universal remote control unit	24					
1.6 Infrastructure of remote control	25					
1.7 Rack controllers, Ethernet, reference and alarm GPI	26					
1.8 Enhanced fiber connectivity and CVBS outputs	28					
1.9 Color coding	29					
1.10 Connection facilities	30					
1.11 Floating inputs	33					
2 Extremely broad range of cards	34					
2.1 Smart double density modules	35					
3 Unmatched functionality per card	36					
4 Unique architecture	39					
4.1 Embedding and the ADD-ON daisy chain bus	40					
■ 4.2 ADD-ON examples	42					
4.3 Synapse, Dolby and the internal ADD-ON daisy chain bus	44					
5 High quality	47					
■ 6 Fits the future	48					
The Modules	49					
Alphabetical index of modules						
Connector panels	328					

Greater than the sum of the cards

Enjoy reduced cost-of-ownership from a system that delivers unrivalled functionality, density and flexibility. Just give us your technical requirements, and we'll show you how Synapse can deliver potentially dramatic savings against comparative solutions.

1 The industry's most versatile system

One form factor and three space-saving frame sizes – all cooled to perfection and offering reliable operation in the busiest of broadcast environments. The rack controller at the heart of the system is the gateway to our huge choice of cards. Features include dual redundant central genlock, back-up and restore of user settings. Setup and monitoring is via free-of-charge software, local control panels or remote control. SNMP support is optional.

2 Extremely broad & evergrowing range of cards

Over 150 exceptional processing modules are available now, with many more in development – each designed for the most demanding application, and providing you with local control of settings/alarm monitoring.

3 Unmatched functionality per card

Featuring leading-edge design, every card brings you more functionality, more condensed, than ever. Especially in the larger projects, the multi-functional feature sets give an unmatched cost-efficiency. Take a look at f.e. TWINS, our smart, double-density modules, to see our optimized real-estate in action.

4 Unique architecture

Synapse's daisy-chain bus reduces labor and costs, whilst improving signal integrity and overall performance. For your engineering ease, all cards are color-coded by function group, and there's no need for dual-width connector panels (except on our high-end format conversion range). Optional fiber I/Os, with CVBS outputs provided via I/O-panels.

5 Unrivalled in quality & reliable - whatever the situation

Designed for dependable use, 24/7, in OB vans, studios and TX suites, with true 75 Ω internal connections ensuring signal integrity. Synapse cards and power supplies are hot-swappable, with the 2RU/4RU versions featuring power redundancy.

6 Futureproofed – for your peace-of-mind

We've built for the future. Synapse lets you transition and grow smoothly between analog audio, SD, AES/EBU, Dolby, HD and 3Gb/s platforms. You get free lifetime software updates too. Plus, our continuous investment in R&D means that whatever happens in the world of signal processing, Synapse will deal you a winning hand.

FRAMES	SFR04 - SFR08 - SFR18	19" rack frames: 4, 8 and 18 slots	50
ANALOG AUDIO DISTRIBUTION	AAD08	Dual channel 1 to 8 analog audio distribution amplifier	52
ANALOG VIDEO DISTRIBUTION	CDV07	Analog video (B&B / Tri-Level) distribution amplifier (word clock DA for high impedance circuits)	54
	CDV08	Analog video distribution amplifier with cable equalizer	56
	CDV29	Reference (B&B / Tri-Level) distribution amplifier with 9 outputs and Synapse reference inputs NEW	58
AUDIO A/D CONVERSION	ADC20	4 channel Analog audio input Synapse ADD-ON card	60
	ADC24	4 channel 24-bit audio A/D converter with AES/EBU bypass inputs	62
AUDIO D/A CONVERSION	DAC20	4 channel Analog audio output ADD-ON card	64
	DAC24	4 channel 24-bit audio D/A converter with AES/EBU outputs	66
EMBEDDING	2EB22	TWINS Dual 4 channel digital audio embedder	68
	2EB24	TWINS Dual 4 channel analog audio embedder	70
	HEB20	HD Dual HD/SD preset based audio embedder	72
	HDE10	HD HD/SD Dolby E/Dolby Digital embedder	74
	SDE10	SD Dolby E/Dolby Digital embedder	76
	SEB10	SD-SDI 4 channel (2 AES/EBU) digital audio embedder	78
	SEB11	SD-SDI 4 channel (2 AES/EBU) digital audio embedder with 4 channel de-embedder, re-insertion unit	80
	SEB15	SD-SDI 4 channel analog audio embedder	82
	SEB20	SD-SDI 4 channel analog audio and digital audio embedder	84
DE-EMBEDDING	2DB22	TWINS Dual 4 channel digital audio de-embedder	86
	2DB24	TWINS Dual 4 channel analog audio de-embedder	88
	DDB10	SD Dolby E de-embedder	90
	HDB20	HD HD/SD preset based audio de-embedder	92
	HDD10	HD HD/SD Dolby E de-embedder (master card)	94
	SDB10	SD (2 AES/EBU) digital audio de-embedder with 8 extra channels through the ADD-ON bus	96
	SDB15	SD 4 channel analog audio de-embedder with 8 extra channels through the ADD-ON bus	98
	SDB20	SD 4 channel analog audio and digital audio de-embedder with 8 extra channels through the ADD-ON bus	100
EMBEDDED AUDIO PROCESSING		HAS20 - HVO10 - HCL10 Cortex Screenshots	102
	ADP10	Audio description processor for SDI embedded audio	104
	HAS10	HD HD/SD 8-channel 2-group embedded audio processing card with presets	106
	HAS20	HD HD/SD 8-channel 2-group embedded audio processing card with local AES/EBU inputs	108
	HAS30	HD HD/SD 16-channel 4-group embedded audio shuffler card with presets	110
	HES20	HD HD/SD embedded Dolby E alignment engine / frame synchronizer	112
	SAS10	SD 4 channel into one group embedded audio shuffler/mixer	114
	SAS20	SD 8 channel into one group embedded audio + ADD-ON input shuffler/mixer	116
	SAS30	SD 2 group GPI (preset) triggered SDI embedded audio shuffler	118
	HCL10	HD HD/SD embedded audio compressor/limiter	120
	HVO10	HD HD/SD Voice Over inserter/embedder NEW	122
DOLBY® PROCESSING		DBD08 - DBE08 - DDP14 Cortex Screenshots	124
	DBD08	Dolby E and Dolby Digital Decoder stand alone or ADD-ON card	126
	DBE08	Dolby E Encoder stand alone or ADD-ON card	128
	DDE51	Dolby Digital Pro encoder	130
	DDP14 - DDP84	Multi stream Dolby Digital Plus and Pro encoder with Dolby E decoder (DDP84 only)	132

AUDIO PROCESSING	ADL24	Analog audio tracking delay with offset	134
	ADP24	Audio description and voice-over processing card	136
	DAS24	4 channel (2 x AES/EBU) digital audio mixing and shuffle module	138
	DIO24	4 channel digital audio sample rate converter, tracking (and offset) delay - ADD-ON card	140
	DIO48	8 channel digital audio (192kHz) sample rate converter, tracking (and offset) delay - ADD-ON card	142
DIGITAL AUDIO DISTRIBUTION	DAD08 - DAD09	Digital (AES/EBU) audio distribution amplifier (08 has transformer coupled outputs)	144
	DAD26	Dual channel digital (AES/EBU) audio distribution amplifier with 2x2 and 2x1 function NEW	146
DIGITAL VIDEO DISTRIBUTION	GDR26	3Gb 3Gbit/s dual input distribution amplifier with 3 reclocked outputs per channel (ASI/DVB compatible)	148
	HDR07	HD HD reclocking distribution amplifier	150
	HDR09	HD HD dual input 1 to 3 reclocking distribution amplifier	152
	SDN08 - SDR08	SD-SDI (Non=N) reclocking distribution amplifier (ASI/DVB compatible)	154
	SDN09 - SDR09	SD-SDI (Non=N) reclocking dual channel distribution amplifier (ASI/DVB compatible)	156
	SDR07	SD-SDI triple channel reclocking distribution amplifier (ASI/DVB compatible)	158
	SDX08	8 SD-SDI to 1 SD-SDI switcher	160
VIDEO A/D CONVERSION	2AS11	TWINS Dual channel 12-bit composite decoder with 5 line comb filter	162
	2AS12	TWINS Dual channel 12-bit composite decoder with 5 line comb filter and frame synchronizer	164
	ASC12	Component (near CCIR601) or RGB to SDI converter	166
	ASM08	Analog to digital A/V converter with composite or component input capability NEW	168
	ASM10	Analog to digital A/V (12 bit) bridge with SDI & embedded audio bypass/processing input	170
	ASV08	Standard quality composite decoder with 4 SDI outputs	172
	ASV12	High-end CVBS decoder (12 bit) with 5 line comb filter, frame synchronizer and 2 group embedder	174
	ASV22	High-end CVBS decoder with 5 line comb filter and frame synchronizer and SDI bypass input	176
VIDEO D/A CONVERSION	HAC08	HD HD/SD monitoring D/A converter (component outputs)	178
	SAM08	Distribution amplifier with monitoring analog audio and video outputs	180
	SAM10	Digital to analog A/V bridge with SDI processed outputs	182
	SAV08	Distribution amplifier with Analog video outputs	184
	SAV38	Triple monitoring D/A converter (composite or Y/C outputs)	186
	SCV12	High-end 12 bit SDI to composite/component/RGB encoder with frame synchronizer NEW	188
ASPECT RATIO CONVERSION	ARC10	Basic aspect ratio converter, 10-bit, horizontal scaling only	190
	ARC15	High-end bi-directional manual controlled aspect ratio converter with digital and analog outputs NEW	192
	ARC20	Cortex Screenshots	194
	ARC20	High-end bi-directional aspect ratio converter with digital and analog outputs	196
	ARC21	Full feature bi-directional aspect ratio converter, digital and analog outputs,	
		with serial video offset delay	198
	ARC22	High-end bi-directional aspect ratio converter, digital and analog outputs, with de-embedder	200
COLOR CORRECTION	CCR10	SDI preset based color corrector with frame synchronizer	202
	CCR20	SDI preset based color corrector with frame synchronizer and enhancement engine	204
	2FS10	TWINS Dual channel frame synchronizer	206
FRAME SYNCHRONIZERS			
FRAME SYNCHRONIZERS	GFS100 - GFS110 -		
FRAME SYNCHRONIZERS	GFS100 - GFS110 - HFS100 - HFS110	3Gb/s, HD, SD frame synchronizer with optional audio shuffler NEW	208
FRAME SYNCHRONIZERS	GFS100 - GFS110 -	 3Gb 3Gb/s, HD, SD frame synchronizer with optional audio shuffler NEW HD HD/SD frame synchronizer with smart audio handling for 2 groups HD HD/SD frame synchronizer with audio embedding for 2 groups 	208 210 212

	HFS12	HD HD/SD frame synchronizer with audio de-embedding of 16 channels	214
	HFS15	HD HD/SD frame synchronizer with color corrector and smart audio handling	216
	SFS10 - SFS20	Multi functional frame/line synchronizer with smooth emb. audio processing (10:1 group, 20:2 groups)	218
	SFS11 - SFS21	Multi functional frame/line synchronizer with embedding function (11: 2 groups, 21: 4 groups)	220
	SFS12 - SFS22	Multi functional frame/line synchronizer with de-embedding function (12: 2 groups, 22: 4 groups)	222
	SPS20	SD-SDI Multi functional frame/line synchronizer with full embedded audio processing	224
INTEGRITY CHECKING	2HX10	HD - TWINS Dual channel HD/SD integrity checking probe with clean switch over function and	
AND PROBING		wings or split screen creation capabilities	226
	2IM09 - 2IM10	TWINS Dual channel (enhanced) integrity checking probe with built-in frame synchronizers	228
	2IX08	TWINS Dual channel basic integrity checking probe with switch-over function	230
	2IX09 - 2IX10	TWINS Dual channel (enhanced) integrity checking probe with switch-over function and frame synchronizer	232
	HIM10	HD HD/SD integrity checking/probe with audio and phase OSD bar-graph insertion	234
	SIM10	SDI distribution amplifier checking and monitoring signal integrity (with OSD)	236
	SIM10	SDI distribution amplifier checking and monitoring signal integrity (with OSD) + subtitle decoding	238
	SIM21	SDI hearing aid subtitles decoder and inserter keyer from Teletext based subtitles	240
GRAPHICS INSERTION		HLI20 - HTI10 Cortex Screenshots	242
	HIL20 - SLI20	HD HD/SD preset based dual logo inserter	244
	HTI10	HD HD/SD-SDI preset based text inserter NEW	246
VIDEO FORMAT CONVERSION	2HS10	HD - TWINS Dual channel high-end HD-SDI to SD-SDI/composite down converter with de-embedding function	248
	2HS11	HD - TWINS Dual channel high-end HD-SDI to SD-SDI/composite down converter with embedding function	250
	GDS100 - GDS110 -		
	HDS100 - HDS110	3Gb 3Gb/s, HD, SD down converter/synchronizer with optional audio shuffler NEW	252
	GSU100 - GSU110 -		
	HSU100 - HSU110	3Gb 3Gb/s, HD, SD up converter/synchronizer with optional audio shuffler NEW	254
	GSU150 - GSU160 -		
	HSU150 - HSU160	3Gb 3Gb/s, HD, SD up converter/synchronizer with side curtain input and optional audio shuffler NEW	256
	GXG100 - GXG110 -		
	HXH100 - HXH110	3Gb 3Gb/s, HD, SD up/down/cross converter/synchronizer with optional audio shuffler NEW	258
	GXG150 - GXG160 -		
	HXH150 - HXH160	3Gb 3GB/s, HD, SQ up/down/cross converter/synchronizer with side curtain conversion and optional audio shuffler NEW	260
	HDS10	HD Premium quality HD-SDI to SD-SDI down converter with frame-synchronizer	262
	HDS20 - HDS21	HD High performance HD-SDI to SD-SDI Down converter	264
	2HU10 - 2HU11	HD - TWINS Dual channel HD up-converter with color corrector NEW	266
	HSU10	HD HD up-converter with color corrector	268
	HSU11	HD HD up-converter with color corrector and 2 group embedder	270
	HSU20 - HSU21 HSU30 - HSU31	HD High performance HD-SDI upconverter	272 274
		HD High performance HD-SDI upconverter with enchanced noise reduction	
	HXH10	HD HD-SDI cross converter between 1080i and 720p	276
	HXH20 - HXH21	HD High performance Up, Down and Cross converter	278
	HXH30 - HXH31	HD High performance HD standards converter	280
	HXH40 - HXH41	HD High performance HD Up/Down/Cross & Standards converter	282
	HXT10	HD Dual HD input, frame synchronizer, down converter, embedder, CVBS encoder	284
	HXT12	HD Dual HD input, frame synchronizer, down converter with embedder, de-embedder	
		HD Dual HD input, frame synchronizer, down converter with embedder, de-embedder and CVBS encoder High performance SD standards converter	286

MULTI-IMAGE PROCESSING		HQW200 Cortex Screenshots	290
AND DVI OUTPUT	GQW200 - HQW200		
	SQW2000	3Gb Triple rate SDI guad split/multiview building block	292
	HDW10	HD HD/SD SDI to WXGA converter on VGA and DVI	294
	HQW10	HD HD (1)/SD quad split to WXGA converter on VGA and DVI with HD-SDI single	
		channel display capabilities	296
	HQW15	HD HD/SD quad split to WXGA converter on VGA and DVI with full-screen display capabilities	298
	SDW10	SDI to WXGA converter on VGA and DVI	300
	SQW10	SDI quad split to WXGA converter on VGA and DVI	302
VIDEO DELAY SOLUTIONS	HVD10	HD HD video delay (31 frames)	304
	SVD10	Universal frame synchronizer with extended (24 frames) video delay offset and	
		monitoring D/A converter	306
	SVD20	SDI Extended (254 frames) video delay	308
MISCELLANEOUS	INS21	VBI line inserter/swapper (data bridge)	310
VIDEO PROCESSING	INS30	SD Closed Caption and Teletext encoder with monitoring outputs	310
VIDEO INOCESSING	SDL30	SDI legalizer in the composite domain	312
	TXT06	OSD identity generator with user definable text	314
	VWI10	Multi functional frame/line synchronizer with VLI/WSS inserter	318
	VWI20	Preset based VI and WSS inserter	320
	V W120-		520
MISCELLANEOUS	GPI16	Universal GPI card with 10 GPI inputs and 16 GPI outputs	322
	PBS03	Dual channel relay based back-up switcher with signal integrity checking	324

Highlights

Three frames, one form factor with local control of settings and monitoring of alarms. No dual width connector panels are required (except for the high-end format conversion range). Redundant power supply for the SFR18 (4RU) and SFR08 (2RU). Hot swappable cards and power supplies.

Single form factor and unmatched functionality per card

3Gb/s, HD, SD, Dolby, AES/EBU and analog audio in one frame. See page 12 + 34.

Unique architecture

Synapse daisy chain bus PCB reduces cost and labour, improves signal integrity and generates powerful applications. See page 39.

Cortex

A powerful maintenance, control and monitoring software applications. See page 14.

Reference Dual reference distribution is part of the frame. See page 26.

Optional fiber transmitter/receiver and CVBS connectivity to most modules. See page 28.

Ethernet Ethernet connection directly into the frame is standard. See page 26.

Local control panel See page 23.

Remote control panel See page 24.

Future proof See pages 47-48.

1. Most versatile system in the broadcast industry

Synapse is an intuitive, easy-to-use system that is developed for advanced applications, as well as straightforward systems. It not only satisfies the requirements of current technology, but will also accommodate developments far into the future. The single form factor now contains technologies covering analog and digital audio and video, SD, HD and 3Gb/s. Indeed, the Synapse system has proven to be `future proof'.

SFR04

The smallest frame is the SFR04, a 1RU frame designed to house 4 cards. It has all the features of the SFR18 with the same card and connector panels, but limited to one power supply and one reference input.

name Synapore

SFR08

The mid-sized frame is the SFR08, designed to house 8 cards. Dual redundant power supplies, autoranging from 100V to 240V AC, can be used. Two individual reference inputs synchronize the frame. It has a frontremovable fan tray.

SFR18

The larger frame is the SFR18, a 4RU frame designed to house 18 cards. Dual redundant power supplies, autoranging from 100V to 240V AC, can be used. Two individual reference inputs synchronize the frame.

AXON'S DNA

When I started working for AXON 14 years ago, it was what you would call a small, engineering-driven company. SDI was our main focus, and that proved to be a good choice.

Now, with over 70 employees, customers and major installations at key sites worldwide (and a slightly larger turnover), a lot has changed.

Fortunately a lot has stayed the same. We are still as enthusiastic, technology- conscious and quality-driven as we were back then – it's in our genes. We call it 'AXON's DNA'.

Our future focus is to remain true to our heritage. What else can we do but build great products? Look at our new 100 series of up, down, cross converters in this brochure. These products are packed with new features, and we offer flexible upgrade paths all the way to 1080p helping you to protect your investment when standards evolve again.

1.1 Three frames, one form-factor

Analog and digital audio and video, SD, HD, AES/ EBU, Dolby processing, 3Gb/s in one form factor.

A single form factor increases the value of a modular system. Your investment is safe, you don't have to worry about re-use and swapping of cards and/or frames, and will be able to use the latest developments in frames you already own.

1.2 Cooling

Considerable effort was put into the mechanical design of this high-density frame. AXON has managed to combine many functions into a confined area without running into temperature or power issues.

The fan units can be replaced while the Synapse SFR18 is operational. They are easily removed via the top of the frame.

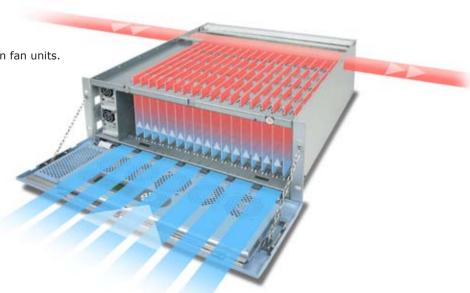
The SFR18 is built around a 'sandwich' construction. Two powerful fan units placed in a tunnel, which runs across the top and rear of the frame, ensure a reliable and evenly spread airflow over all 18 cards. The airflow intake is on the front of the frame with outlets at either side.

The SFR18 power supply has its own cooling system.

SFR04

The SFR04 has its air intake on the right side and outlets for the warm air on the left side of the chassis. The removable power-supply of the SFR04 also houses the fan unit for easy maintenance.

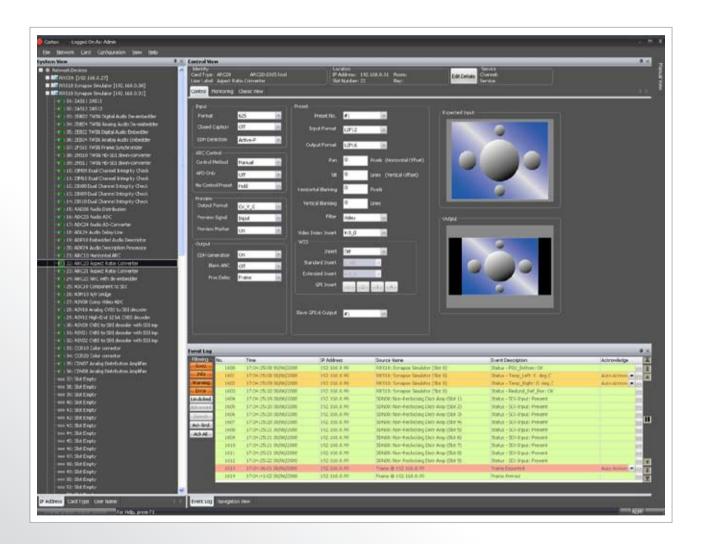
SFR08


The SFR08 has its air intake on the right side and outlets for the warm air on the left side of the chassis. It features a front removable fan tray between the two groups of four cards.

SFR18

SFR18 active cooling by built-in fan units.

Optional frontpanel fans for heavy duty use (Q12009).



1.3 Cortex Set Up, Monitor and Control Software

The AXON Cortex software application provides comprehensive configuration, monitoring and maintenance tools for Synapse. This Windows based application includes functionality which enables the user to remotely:

- Configure a complex system in a short space of time,
- View, record and archive the system events and report these to the user using a hierarchical system status,
- Control devices using a user intuitive graphical interface,
- Maintain the system over its lifetime.

The Cortex application uses Ethernet communication to each device in the system enabling the ability to both configure and monitor systems at local and remote sites. It uses an SQL database to record, view and archive the historical system events as well as store the user definable aspects of the system configuration. This database can also be used for the users own requirements via ODBC or similar interface. The application allows up to 64 user groups to be defined, for each group the level of access can be restricted not only to program functionality but also to control access of individual settings on specific devices. Limitless users can then be added and assigned to one of these groups, each with their own unique password, ensuring that Cortex can be used for operational areas where conditional access is required as well as a system administrative tool.

The standard functionality of Cortex is available free of charge to customers from the AXON's Web Site (www.axon.tv), and will work with all Synapse products without upgrade or purchase of additional software.

System Configuration

The ability to configure a system quickly and easily is an essential part of any system and Cortex provides a number of tools to do this. Each device is represented by one or more graphical dialog interfaces which are shown in the Control view automatically when the device is selected from the system view. These provide a clear idea of function and signal flow within the module making the setting clear in its effect on the signal path. For some devices such as Aspect Ratio Converters, visualisations are given for the output display. If further clarification of function is required a view to the manual for the selected card is always available.

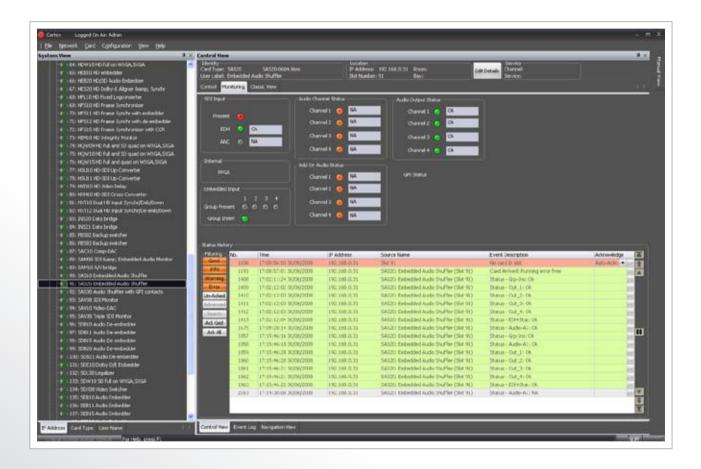
When configuration of a device is complete it can be saved as a template file or to the clipboard and copied to other selected devices in the system easily. Using the Compare function, settings and status for devices of the same type can be compared with differences being highlighted. In order to ease some aspects of configuration and make monitoring of the system more applicable to the users particular application, additional user data can be added to the devices to provide information about the location, channel and/or service the device is providing as well as a free form notes field for all other information.

System view and event monitoring

2010 C Multi, G S Multi,	priners Card Contouration Yere 1946 Now 8-10	Deteting							
310 (* District of Statements (* District of State St	3-010 TWBI PD-325 downcommuter [190.340.0.30]	Filterer	MG-	(he	IP Address	Source Marre		EventDesciption	Adappowedge
3 http://dim/second/second/pace/second/se		- fixed as							
3 H C C M (1) N (1) L M									
3 http://dxide.status.line.line.line.line.line.line.line.line		Concession in the local division in the loca							
3 http://dx.ide/study/spino//wide/[14:146.1.1] 177 (F13 Hills Spin(2) 178 178 178 <td></td> <td>- Lester</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td>		- Lester							100
3 H (C C V (C L L L L L L L L L L L L L L L L L L									ALP MILLS
2000 cold based instrat: Order (200 based) instrat:							- W-		
2202020 db Dowel https:// 0-84 [01:00.853][/:] File 2014 [01:00] File 2014 [01:00] Marce 2014 [01:00] Annual Annual Processing 2202020 db Dowel https:// 0-84 [01:00:00] File 2014 [01:00] File 2014 [01:00] Marce 2014 [01:00] Marce 2014 [01:00] 2202020 db Dowel https:// 0-84 [01:00] File 2014 [01:00] File 2014 [01:00] Marce 2014 [01:00] Marce 2014 [01:00] 22020 db Dowel https:// 0-84 [01:00] File 2014 [01:00] File 2							(6)		
Cale Date Exact PT PT< PT< PT<		and the second se							ALP ADD .
ACC+ (1) <td>2910 Cuel Dorsel bing to Clerk [112 108 A.30] [</td> <td>(Ad.AL)</td> <td></td> <td></td> <td></td> <td></td> <td>(6)</td> <td></td> <td>100</td>	2910 Cuel Dorsel bing to Clerk [112 108 A.30] [(Ad.AL)					(6)		100
Aff 11 Consider Audio Services (121:000.007) March 2000 Autor 2000 A	22100 Dual Channel Dring 1; Check [190.146.6.30] [79]		1775	17-13-23-11 30/06/2008	132.305.0.21	261.8		Carl removed	100
Artest (as to too top) (a) (b) (b) </td <td></td> <td></td> <td>1777</td> <td>17.13.23.29 30/06/2000</td> <td>1210-008-0-01</td> <td>34000-1 (De</td> <td>10</td> <td>Nam-CariPhenexe, CARD_RDHD(00)</td> <td></td>			1777	17.13.23.29 30/06/2000	1210-008-0-01	34000-1 (De	10	Nam-CariPhenexe, CARD_RDHD(00)	
ACCUT (117): 100.0119[11] 100 (12.32.01.22) 6.4 100.0007/NDNR ACCUT (12.10.0.2.00] 112.10.0.2.00] 112.10.0.2.00] 112.10.0.0.07/NDNR More - Calibrane Adversame for an analysis of a state of a					o mai			We cand the shift	Adv Advis
COM 11:02:00:0000 12:02:00:0000 12:02:000000 12:000000000000000000000000000000000000									100
COND. Gold Process [125] (26.20) Carl Bits Cond. Cond. Filter State S					152 358.8.21	54	10		
Construction Construction<					CASE A	Condition	ETOYODORE STRANG		
SEC1 + LOAD (1) C1+4 11 + LOAD (2) C2+4					10 CP/	and the second s			
DD111066/21 Docs(10.84.04.02)[12] 199 (123.20.20.20)[12] 199 199 (123.20.20)[12]					674F 3	Clinct Name	MC-2R		
StOre Stor 200 Set-Set Coxim (Sec. 300 Sec.									
9716 (971 (1) 2.100.002 (1) (1)						Tine:	1		
9716 (1) (12) 10.8.1.2] (2) 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.1.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 17.1.5 (2) 20.0.0.2] 199 19.1.5 (2) 20.0.0.2] 19.1.5 (2) 20.0.0.2] 19.1.5 (2) 20.0.0.2] 19.1.5 (2) 20.0.0.2]									
NACCO (C)D Audo Puelles Audo Puell	GREEN(112.106.8.23)[0]					Table 1			
IEEDS (1) (1) 179 (115.2) 179 171 179 171<11	14G25 HD/3D Aude Shuffer & AC3 to [112 508.3.31]		1709			Coldina and	the second se		
ICOND [12]: 14.8.4.14[13] 174 [17]: 15.3.3.2.2.2002 Intermit constant [20]: 14.6.3.20[11] Intermit constant [20]: 14.6.2.20[11] Intermit constant [20]: 14.6.2.20[11] Intermit constant [20]: 14.6.2.20[11] Intermit constant [20]: 14.6.2.20[12]			1790	17.15-31.01 30/502 Freed D	ALS STREET	Florest Taxe	12:11:36:14	Status - Gy-2m. Ch.	
Click (Link Control Link Contre Link Control Link Co			1791	17.13.31.00.30/565	the second little second			Distan - Terrar 27 straff	10
Hardbell Loop Isolate (2013) 11%					fond SUSLO-IN(Skt 1)	9			100
Number Number<					In She MC 91	E:Dror			10
HL2D Log Dearter [10: 10: 00.27][1] Hest Deart				12/12/2014 20:001	No. of Concession, Name	and shares			100
New York Dire Control Dire Dire <thdire< th=""> Dire Dire</thdire<>					is kiterent	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			and the second s
Approximation Constraint Cons						Levier 1			ALC ALLOW THE REAL
MC/VCD01102 Quid Split [1021.663.0.00] [10] 1779 17.12.2.4.11.0.2.0002 Split lot 1.6.1.0.2.0.01 National state (1021.663.0.00) National state (1021.663.0.00) <td></td> <td></td> <td></td> <td>THE PARTY AND A REPAIR</td> <td></td> <td></td> <td></td> <td></td> <td>ALC DOLL</td>				THE PARTY AND A REPAIR					ALC DOLL
New York Construction				The second second second	I list due to failing up the	an router publik			
NUMBER ON C Scale State (Sci. 164.5.30)[7] Imm. This 25 Anticit 200000 Data F 100, 100.0011 Data F 100, 100.0011 <thdata 100,="" 100.0011<="" f="" th=""> Data F 100, 100.0011 Data F 100, 100.001</thdata>					241)				
NUCCO System Intel (10: (10: 0.07)) State (11: (10: 0.07))									Adv Adver
NUMBER IN RELEVANTION (INC. MAD. 0.0.1[0.1]) IDE IDE INFORMATION (INC. MAD. 0.0.1[0.1]) IDE IDE <t< td=""><td>HQW200 Inputs 1-4 [130.168.0.27][1]</td><td></td><td>1000</td><td>17:13:03:10:30060</td><td></td><td></td><td></td><td></td><td>100</td></t<>	HQW200 Inputs 1-4 [130.168.0.27][1]		1000	17:13:03:10:30060					100
HELL IN CL (2010-00-100) [10] IND Default PM-2 File, 24 Default PM-2 File, 24 HELL IN CL (2010-00-100) [10] IND IND IND Default PM-2 File, 24 HELL IN CL (2010-00-1000) [11] IND IND IND Default PM-2 File, 24 HELL IN CL (2010-00-1000) [11] IND IND IND File, 2010, 2010 Default PM-2 File, 24 HELL IN CL (2010-00-1000) [11] IND IND File, 2010, 2010, 2010 Default PM-2 File, 2010, 2010 Default PM-2 File, 24 HELL IN CL (2010-00-1000) [12] IND File, 100, 2010, 2010, 2010, 2010 IND File, 100, 2010, 2010 Default PM-2 File, 2010, 2010, 2010 HELL IN CL (2010-00-1000) [12] IND File, 100, 2010, 2010, 2000, 2010, 2010, 2010, 2010 Default PM-2 File, 2010, 201	HQW200 Inputs 6.4 [130.168.0.27][4]		1900	17:13:03:14:30/56/2				Distant Trans, Poplar, 25 deg.C.	241
HELD 100 Exprovements [352,148.0.20][11] 1006 CLORENTIAL Local Model Local Default Only (1) Befault Only (1)									100
HEXE NO Las convertes/AF [12:14:0.20]					Lipdate M	des Close			100
HELD 10 (Eq. 000-001-0) [12] HED 10 (11-001-000-0000) HELD 10 (12-000-0000) HELD 10 (12-000-00000) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td>									100
HEAD 10 (Exp convertes/AF (202), UR 0. 200 (201)) HEAD 10 (Exp convertes/AF (202), UR 0. 200)) HEAD 10 (Exp conve									100
HTDD/D Twick States 11110 11110 11110 111									100
HOTE REC: 11111 1111 1111									
HOTE Fight Mach-Own Show Withows (102,144,0,3,1) TEL FEE (11,14,16,14,20,25,200) TEL: 543,042 SMEED 5 (26,10) Deate: Ander O, 2, Oppid Ann. Moles * 0, 2 MOSE AND E-monitoring (202,146,0,30) 1111 (1114,161,12,00) 110,149,042) SMEED 5 (26,10) Deate: Ander O, 2, Oppid Ann. Moles * 0, 2 MOSE AND E-monitoring (202,146,0,30) 1111 (1114,161,12,00) 110,149,042) SMEED 5 (26,10) Deate: Ander O, 2 Oppid Ann. Moles * 0, 2 MOSE AND E-monitoring (202,146,0,30) 1114 (1114,161,12,00) 110,149,042) SMEED 5 (26,102) Deate: Ander O, 2 Ann. Moles * 0, 2									
Mick Durk Dist. (h): 10: 10: 10: 10: 10: 10: 10: 10: 10: 10									
MACH THAT E-most consister [321.46.5.37][12] 1314 1314.4313 (2014) (201									
NO-00 Pub RD Pumel converting [322:146.0.30][12] TELE TELESCO TELESCO <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
HAHD Fund conserve [32:146.0.30][11] 1114 (1114) 0000 500562200 110,194,0001 SARET 44 (04:10) (04:4:0) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
261417 Pul PC Family Economics [192:140.0.30] [11]	HEHEE Pull HD Format converter [192.146.0.30] [11]		1115	17114-00.00.0016/2000	110.163.0.21	SAELD NA 15	41.131	Roba - Grp Inis Ch	1
			1117	17114-05-04 30/04/2008	110.163.0.21	SALLEY MALE	41.531	Baha Mick-Bah DL	
HOTSCHWAR (192, 100 0 144)[1]		1	-						

Each device on the system is shown in the Status view and will display its current and historical status using an icon. Cortex will actively monitor each device to check for its current status. The status of each device is passed to its parent node within the System view so that a hierarchical status of the complete system can be shown using a single icon, this is also reflected in the applications optional status bar and in the system icon tray when the application is either obscured or minimised. The System view can be displayed in order of their network address or alphabetically by the device or user name.

Well engineered

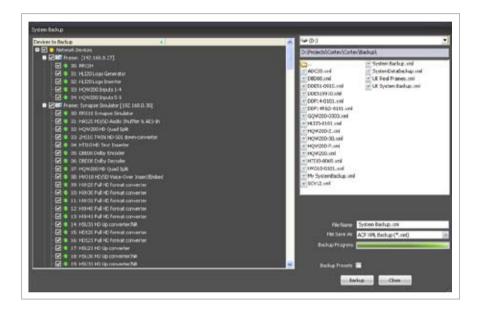

AXON has complemented its successful Synapse product range with Cortex – a well-engineered configuration, monitoring and control software system. Cortex harnesses the experience gained from the original Synapse set-up program as well as close liaison with customers. It's a product that is scalable for the ever-increasing requirements we are asked to fulfill.

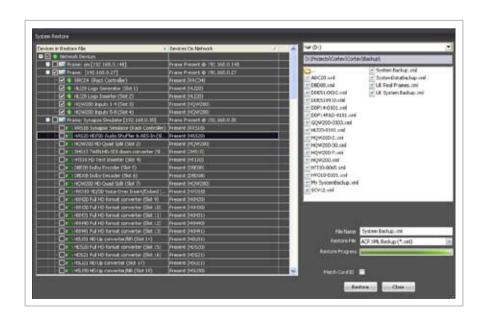
Ian Hollamby

Manager Research, Development & Engineering UK

Each event that occurs on the network for the devices being monitored, either by ACP (AXON Control Protocol), SNMP or 3rd party protocol is logged to the database and shown in the Event log. A status priority can be assigned to each event to determine whether an alarm or warning action should be triggered. Each state of a devices status can be configured by the system administrator to reflect the severity of the event and the method by which the warning or error should be cleared (either manually or automatically on a good event state).

The Event log window can be filtered on different criteria to show the information required. Each event can be edited to allow additional user data to be stored with the event, such as the cause/reason for the related warning or error.



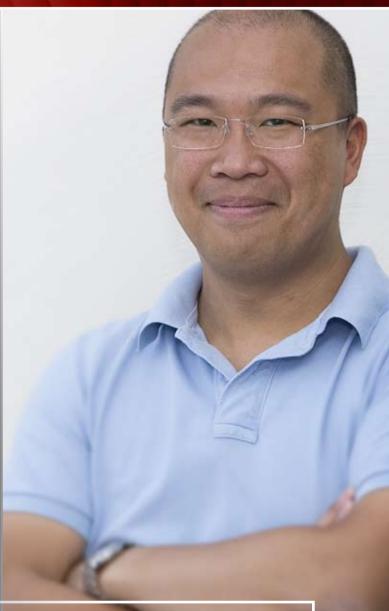

When each device is selected using the Status view a monitoring tab is also displayed in the Control view for the device. This dialog shows both the current status of the device as well as a status history grid similar to the event log but automatically filtered for events specific to the selected device. For many devices this dialog uses LED's to aid the quick visual status recognition of the current state for the device.

This event table within the database can optionally archive 'old' events (which are not currently determining the current state of the system) from the SQL database to an external XML file. This allows an automated historical record for the system to be kept without user intervention, up to the limit of storage size configured by the administrator.

System maintenance

Once the system has been configured for an installation or for a particular programme or event the Backup function can be used to record the settings of a complete or partial system and stored in a single file. This file can be used using the Restore function to ensure that the system is in the same state at some point in the future, e.g. when the same programme/event is being recorded again.

sapard


As and when new features are available for the Synapse modules, customers can download firmware from the web site and upgrade their devices. The Firmware dialog within Cortex allows the upgrading of multiple cards as a single operation, saving and restoring the settings of devices before and after programming and logging the progress of this programming operation.

on Device	· Cord trans	Liter Meri	INV Vor	DelVn Fie	Product Code	Questione
-C1 - 4910		unde letti en bodum	STATE OF	CONTRACTOR OF	1451UL 9001	1 C
- ED: 1944 11	19-520	Status File Spice			with the second s	
-D = 94111		Contra selli se baller			(Heliaconcos	And Dogenety
D = 54111		de wetralen beske			(e-page-page-	
Dr. Set 114		givilizanti Haari		170	Herson Mark	
Cristellin	32411	gradbelaget: Monker			194500/5601	ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE
Desette		Salette Sverier	CIII		14000/1000	
TO SHOLD	37511	Ters Pare body	CI CI I	1.	1450023008	
The second party last in the						
Tert Getoller				Section Section	1007060s	
D = Sec	0.05.08)+++(Ta 1000a	2 A
Concernance of the second seco		19401			HIGH STREET	(Advance) (1985)
C weeks					P+10019001	_
5 56 12	C101-04		0136	0404 // 5	4/Meptakin r/y-t3-0-0000-0106-peodation.pdf [94908-0001]	on Amplifements
T2 10 344 11					HT0078000	Contrast al
ED HAR IN					Hestrearts	A CONTRACT OF
Distants					144202-2020	Ques
D Mit						A CONTRACTOR OF CONTRACTOR OFO
					347504000	
						Contrates Inte
10 mil					12	 Development av en der bei er Predig Carel (name)
		_			Effect Markan dy Cont Sport Sectors	 Dynaffinska er belin Tredy Cart (and)
						 Designation of the second secon
t constant Plan		No Theo POLIT			The Second	 Sandbookare Selection Party Constraint
novad Pila urezd Pila		nie reter. <mark>HOLISTaar</mark>		PROPERTY IN	The bitwish Carl See Andrea / Notes	
t constant Plan		nia Telan, <mark>PCLIST, ap</mark> l			Carlos Contractor	2 per l'holor e la holo Holor (per jano)
novad Pila urezd Pila		nia Titan, <mark>FCL 187, ap</mark> f			Carl at Shene for them Angens Carl at Shene for them Angens Carl at Shene for the Angens Carl at Shene for the Carl at Shene fo	i i i i i i i i i i i i i i i i i i i
novad Pila urezd Pila	-	nia Titar, <mark>HUUMayi</mark>			Construction of the Construction Product of	i i i i i i i i i i i i i i i i i i i
Trouan Pla urstef Block - 🔀 📆 urste Grockwy - 🚺 Block/Associat	-	Na Filer, <mark>ECUL^a ar</mark>			Carl at Shene for them Angens Carl at Shene for them Angens Carl at Shene for the Angens Carl at Shene for the Carl at Shene fo	i i i i i i i i i i i i i i i i i i i
ronal 76 unot ains 🗶 😰 unot desser Y. Mod Associ NEO 106 OPP productor.go	-	tie filer, <mark>FOUSS-ef</mark>			Construction of the Construction Product of	i i i i i i i i i i i i i i i i i i i
ronal 76 unot ains 🗶 😰 unot desser Y. Mod Associ NEO 106 OPP productor.go	-	ris filor. <mark>FOLIS⁴ar</mark>			Construction of the Construction Product of	i i i i i i i i i i i i i i i i i i i
ronal 76 unot ains 🗶 😰 unot desser Y. Mod Associ NEO 106 OPP productor.go	-	nia filme <mark>ECLU^{ar}an⁷</mark>			Construction of the Construction Product of	i i i i i i i i i i i i i i i i i i i
ronal 76 unot ains 🗶 😰 unot desser Y. Mod Associ NEO 106 OPP productor.go	-	nia ritari <mark>HOLITAR</mark>			Construction of the Construction Product of	i i i i i i i i i i i i i i i i i i i
ronal 76 unot ains 🗶 😰 unot desser Y. Mod Associ NEO 106 OPP productor.go	-	th film, <mark>Kulf gr</mark>			Construction of the Construction Product of	i i i i i i i i i i i i i i i i i i i
ronal 76 unot ains 🗶 😰 unot desser Y. Mod Associ NEO 106 OPP productor.go	-	ria Filon <mark>PCLIC⁶ of</mark>			Construction of the Construction Product of	i i i i i i i i i i i i i i i i i i i
ronal 76 unot ains 🗶 😰 unot desser Y. Mod Associ NEO 106 OPP productor.go	-	nia ritera <mark>HOJIP (a</mark> r			Construction of the Construction Product of	i i i i i i i i i i i i i i i i i i i

The System inventory function allows a file to be generated containing the identity information for all devices on the system, this file can be used as an input for audit control systems, firmware version monitoring or network identification purposes.

Creative solutions

My teammates and I in the internal sales department are here to guide you through order and logistics processes – which can sometimes be pretty complex. If any unexpected issues arise we always try to find creative solutions to suit your needs.

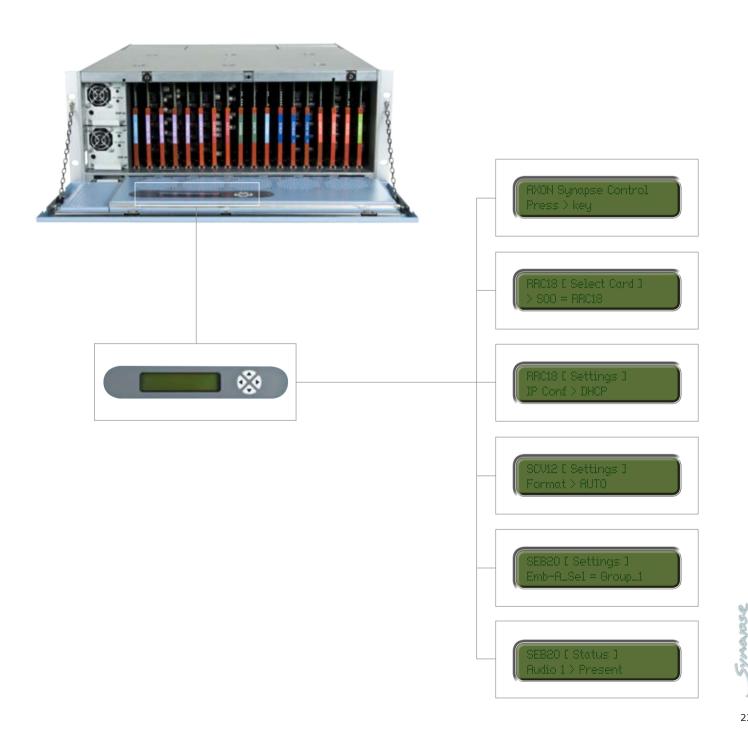
Sin-Hang Wat
Sales Correspondent

Understanding

Service is about actions not slogans. Understanding customers, getting into their heads, seeing difficulties and problems as they do, is how we create solutions for them.

Maarten Hoogedoorn

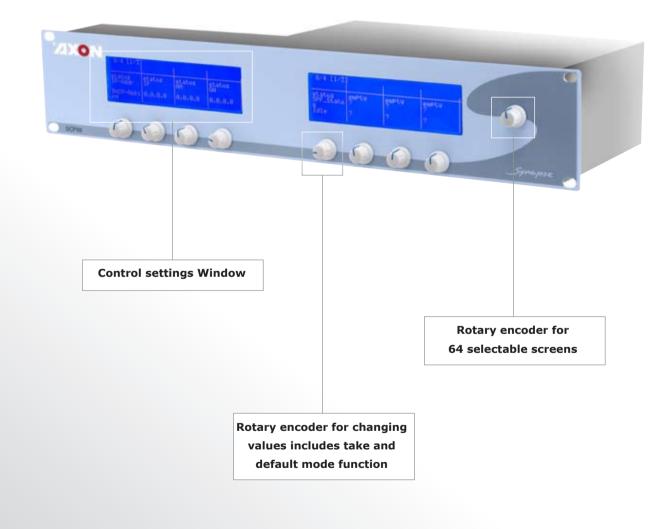
Senior Systems Engineer



1.4 Local control directly into the frame

The local control panel uses the same path as a remote control, hence contributing to the ease of use of the system.

The control panel


All card settings are modified and maintained via an intuitive control panel. The menu is an easy to understand tree structure that facilitates safe and fast local control.

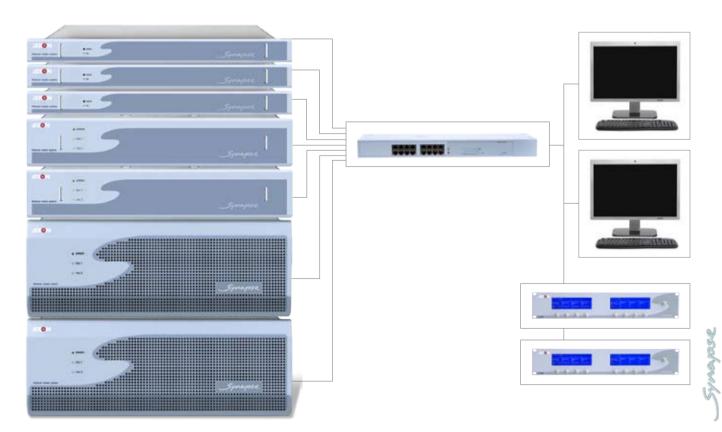
1.5 SCP08 Universal Remote Control Unit

The SCP08 is a stand-alone Synapse control panel that operates with the TCP/IP protocol (Ethernet) and can control 8 different parameters on one screen or more (a maximum of 64 screens). This means that the total amount of controllable parameters/status information is no less than 512.

Within Cortex all settings and status monitoring can be specified. The panel has software to select/browse all desired parameters of all the cards in all the Synapse frames that are connected. Any parameter per screen can be user-defined, in complete freedom. In other words, a parameter of each and every card within each networked frame can be selected.


1.6 Infrastructure of remote control

SNMP compatible

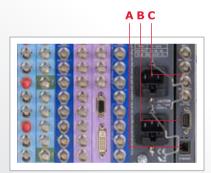

Each Synapse frame is fitted with a rack controller (RRC18 for the SFR18, RRC08 for the SFR08 and RRC04 for the SFR04) which stores all user settings and houses the input for the genlock signals. The standard Ethernet interface features a UDP/IP stack. The rack controller can store all parameters of each card in the frame. This information can be updated as soon as a card in a previously used slot has been replaced. All parameters on each individual card are stored into flash memory. In the event of rack controller failure, each card will operate independently. Changing the settings can be done remotely (Cortex), or by using the front panel user interface.

The system supports several levels of remote control:

- For low level control a dedicated protocol, based on TCP/IP, is available,
- SNMP support is optional (RRS18/08/04) allowing easy control by 3rd parties.
 MIB files can be downloaded at: www.AXON.tv.

Stand alone

Built-in Ethernet


1 or 2 power supplies

Independent AC inlets

1.7 Rack controllers, Ethernet, Reference and alarm GPI

The Rack controller is the hart of the Synapse system. It tells the user what cards are present, what kind of alarms are reported and is the gateway to control the modules. It also provides the possibility to back-up and restore all user settings of the cards present in the same frame. This controller comes standard in each frame and is mounted in the back of the frame without sacrificing a card slot. It also provides the I/O for the dual redundant central genlock (single on the SFR04).

Central genlock (A)

(2 and 3 level sync and word clock) The Synapse range has a built-in reference distribution system (dual for the SFR18, SFR08 and single for the SFR04).

GPI/O out (B) Power supply failure and programmable GPI's can be monitored.

Ethernet (C) Built-in Ethernet based networking.

Vitality

Eight years after launching, Synapse is one of the most flexible systems available – but we've barely scratched the surface of its capabilities. The level of cooperation between AXON and its customers, to refine the existing portfolio and define new products, is terrific and will maintain Synapse's vitality for a very long time.

Jean Pierre Nouws

Product Manager

1.8 Enhanced fiber connectivity and CVBS outputs

The Synapse system is prepared for interfacing through fiber. Connector panels can hold fiber in- and outputs. The standardized connection of SDI in- and outputs allow numerous combinations of fiber processing and connections. For example, a BPL01R_SC (fiber input panel) combined with an SFS10 (Framesynchronizer) provides a stand-alone optical receiver with frame synchronizer and 4 processed outputs. It is also possible to go from SDI on fiber to composite while using only one slot in an SFR18, SFR08 or SFR04. These cost effective options increase the flexibility of the Synapse system even more.

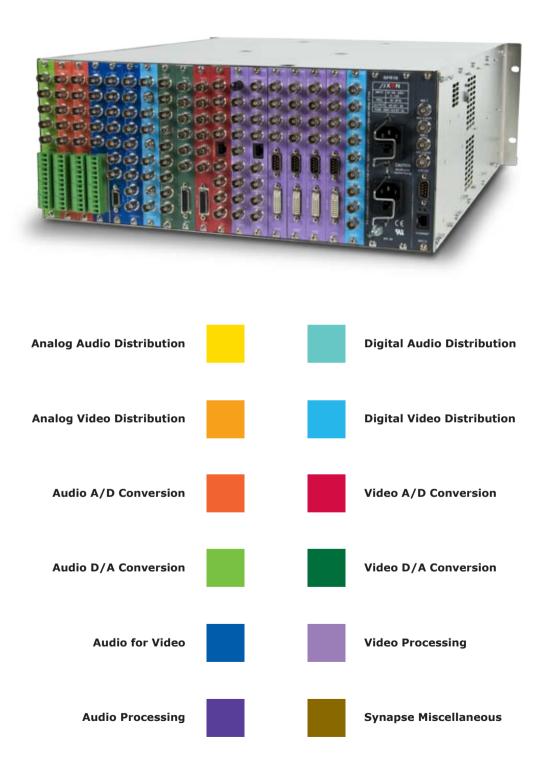
Common fiber specifications

All Fiber optic transmitters for HD-SDI (ANSI/SMPTE 292M 1,485 Gbps.) and SDI (270 Mbps).

- FC/PC or SC connector for single mode fiber (9/125µm)
- 1310nm FP laser with monitor photodiode feedback power control
- Optical output avg. power level -6dBm
- Ext. ratio 9dBm
- Class 1 laser product

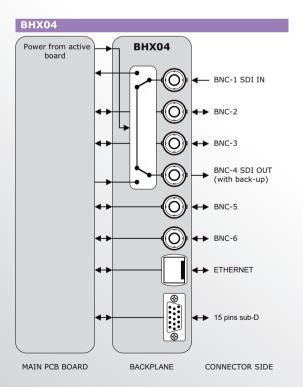
All Fiber optic receiver for HD-SDI (ANSI/SMPTE 292M 1,485 Gbps.) and SDI (270 Mbps)

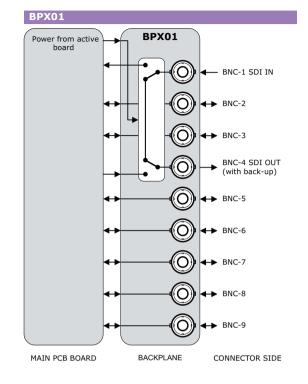
- FC/PC or SC connector for single mode fiber (9/125µm)
- Compatible with multi mode fiber (50/125µm 62,5/125µm)
- 1260 1610nm SFP module
- Optical input avg. power level 0dBm to -20dBm (with ANSI/SMPTE 292M pathological signals)

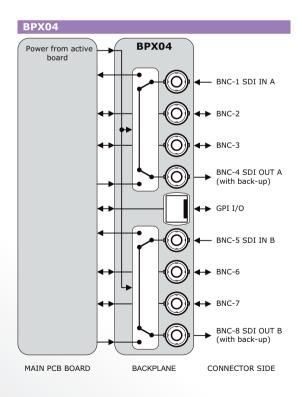

Synapse includes an extensive range of CVBS rear connectors

Synapse offers now the ability to add CVBS (PAL/NTSC) outputs on a selection of SD modules. This option to a standard connector panel replaces an SDI output with a CVBS output. For example, the BPL01C combined with the same SFS10 gives you 3 processed outputs and a single CVBS output on the same card in a single slot.

1.9 Color coding

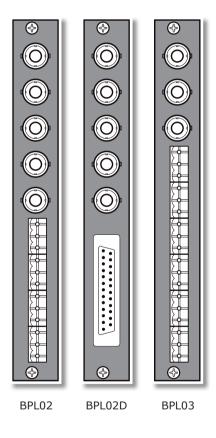

The Synapse product groups are color coded for easy recognition between card fronts and connector panels at the back.

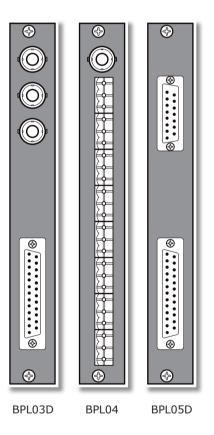



1.10 Connection facilities

How Synapse offers different I/O connectivity for every active module

The Synapse modules can be combined with different connector panels (backplanes). These connector panels are supplied with screw terminals and sub-D connectors for audio, BNC and fiber optic connection for audio and video. All AES/EBU in- and outputs can be supplied with either BNC for 75 Ohm impedance, 3 pole screw terminals or sub-D connectors for 110 Ohms by selecting the corresponding connector panel. There are also a couple of electro mechanical relay protected connector panels that offer a passive pass-through when the card looses power or is physically removed. These connector panels are identified with an 'X' in the product name. Alongside a schematic representation of these switch-based connector panels.




High density is an important design criterion in the development of the Synapse range

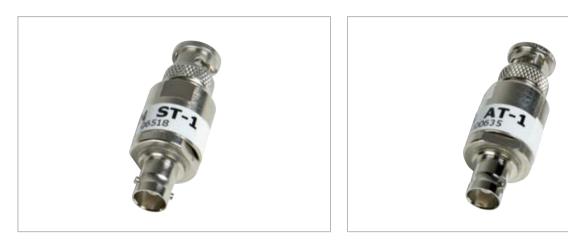
The intelligent cooling topology saves space and enables the use of 9 BNC connectors on a standard AXON connector panel (BPL01). Where other systems have blind spaces or ventilation holes, Synapse is able to place physical connections.

The use of 3-pole screw terminals allows easy connection without the need for breakout cables. Sub-D connectors are also supported. The use of multiple reclocked outputs facilitates efficient system planning and cost savings.

Example of connector panel options for an ADC24.

The AES/EBU is available on BNC, screw terminal and sub-D connector. The analog audio is available on screw terminal and sub-D.

The right person


Every call is important to us, especially if it's to do with service or support. We will always do our utmost to help you contact the right person quickly.

Pascalle Schalks

Frontdesk Officer

1.11 Floating inputs

CE regulations prevent floating BNC connectors to be used on a connector panel range. These inline isolators are to be used when ground potentials are not equal. Solutions for analog video and digital audio and video are available.

ST1 for 270 Mb/s SDI

VT1 for analog video

2. Extremely broad range of cards

Synapse is an intuitive, easy-to-use system that is developed for advanced applications, as well as straightforward systems. It not only satisfies the requirements of current technology, but will also accommodate developments far into the future. The single form factor now contains technologies covering analog and digital audio and video, SD, HD and 3Gb/s. Indeed, the Synapse system has proven to be `future proof'.

More than 150 individual Synapse cards covering:

- Analog and digital audio distribution
- Analog and digital video distribution
- Audio and video A/D and D/A conversion
- Embedding and de-embedding in HD, SD or as part of a processing card
- Embedded audio processing like shuffling, mixing, compressing/limiting and voice-over functions
- Up, down, cross and standards conversion
- Aspect ratio conversion
- Color correction
- Frame synchronization
- Integrity checking and probing
- Multi image processing with SDI and DVI output
- Video delay
- Legalization
- Backup functions
- 3Gb/s, HD and SD distribution
- Logo insertion
- Dolby processing

Several of them are unique:

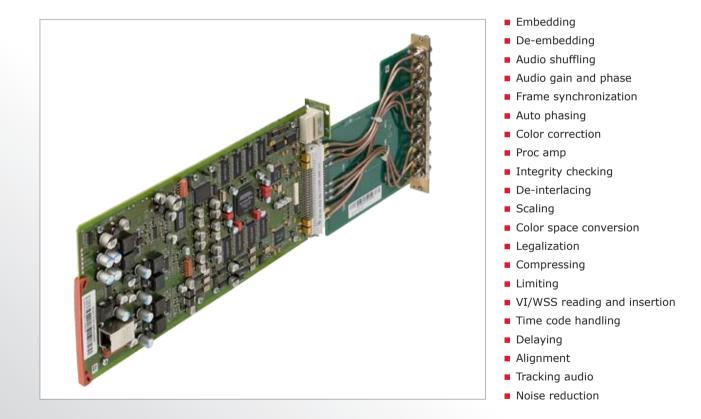
- Low latency up and downconverters (<6ms)</p>
- TWINS, two individual channels on a single card
- Teranex based algorithms
- Dolby E
- Dolby Digital
- Dolby Digital Plus
- Audio description processing
- HD, SD, CVBS plus sixteen channels of embedding in both SD and HD as a single card transmission feed: HXT10, see page 284

2.1 Smart double density modules

Next to the advanced functionality of the existing Synapse modules, AXON extended the range by providing cards containing dual functionality. These cards within the Synapse range are named TWINS. TWINS is developed to serve two purposes:

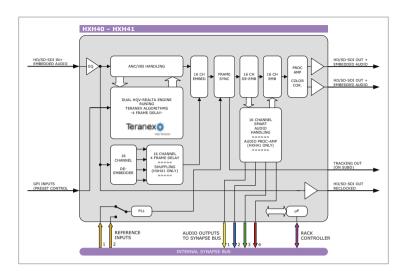
- Extremely high space-efficiency by providing 36 individual processing channels in 4RU
- Superb flexibility for the customer: Synapse now offers basic cost-effective solutions as well as advanced processing cards in the same frame

Dual channel 12-bit composite decoder with 5 line comb filter (2AS11).	See page 162
Dual channel 12-bit composite decoder with 5 line comb filter and frame synchronizer (2AS12).	See page 164
Dual 4 channel digital audio de-embedder (2DB22).	See page 86
Dual 4 channel analog audio de-embedder (2DB24).	See page 88
Dual 4 channel digital audio embedder (2EB22).	See page 68
Dual 4 channel analog audio embedder (2EB24).	See page 70
Dual channel SDI frame synchronizer (2FS10).	See page 206
Dual channel high end HD-SDI to SD-SDI / composite down converter	
with de-embedding function (2HS10).	See page 248
Dual channel high-end HD-SDI to SD-SDI/composite down converter with embedding function (2HS11).	See page 250
Dual channel (enhanced) integrity checking probe with built-in frame synchronizers (2IM09 - 2IM	10). See page 228
Dual channel basic integrity checking probe with switch-over function (2IX08).	See page 230
Dual channel (enhanced) integrity checking probe with switch-over function and frame synchronizer (2IX09 - 2IX10).	See page 232
Dual channel HD/SD integrity checking probe with clean switch over function and wings or split screen creation capabilities (2HX10).	See page 226
Dual channel HD upconverter with color correction (2HU10).	See page 266
Dual channel HD upconverter with color correction and audio shuffler (2HU11).	See page 266

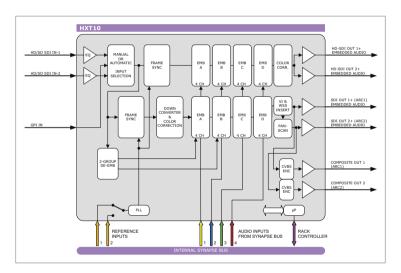

3. Unmatched functionality per card

Designed to bring you as much functionality as condensed as possible

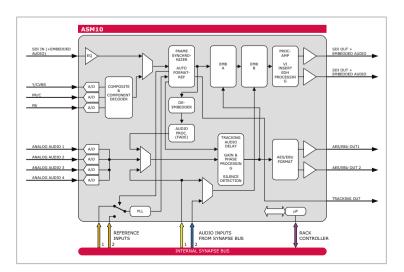
The fairly large real-estate of a Synapse PCB allows for expanded functionality beyond what is normally expected of the product that you would initially choose. It is further enhanced by increased processing power of modern integrated circuits, thus challenging the designers of broadcast systems.


Due to, for instance the Synapse daisy chain bus, modular infrastructures look slightly different on paper. Well used to its full potential, you save space, labor and therefore money! Feel free to contact AXON or its distributors for optimizing your system design and fully utilize the power of the Synapse system.

On the opposite page some examples of the powerful functionality per card are shown.


HXH41 powerful up, down, cross and standards converter

Beside being an HD/SD, up, down, cross and standards converter, the HXH41 offers preset based 16 channels of audio gain, phase, delay and shuffling, color correction and a proc-amp. The add-on daisy chain function allows for monitoring all 16 channels without the need for a separate de-embedder.


HXT10 dual HD input frame synchronizer, embedder, down converter and CVBS encoder

Dual input, individual frame sync for HD and SD, 16 channels of audio embedding in HD and SD, color correction, simultaneous anamorphic and pan-scan SD output are all combined on one card.

ASM10 12 bit analog to digital, A/V bridge with SDI plus embedded audio processing mode

Analog audio and video inputs, digital audio and video (with embedded audio) outputs are all combined as physical I/O on this single width card (18 x in SFR18). On top of this an extra SDI input with de-embedding capabilities and daisy chain bus inputs for two additional groups are provided.

High standard

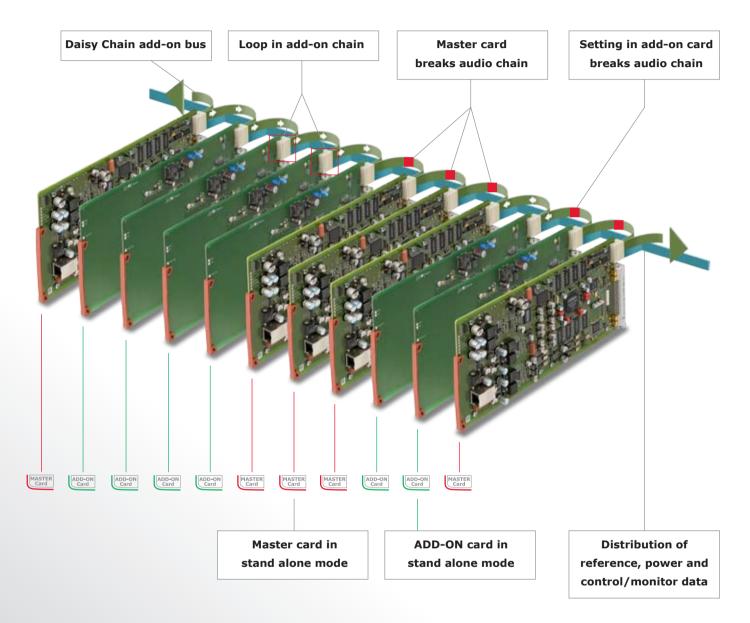
Having worked my entire life in television, I feel like a fish-in-water at AXON. The company operates with the same high standards, and these are reflected in the products, services and the people. Being immersed in this kind of professional environment gives you satisfaction, and gives customers peace of mind. **Marc Derks**

Area Sales Manager

4. Unique architecture

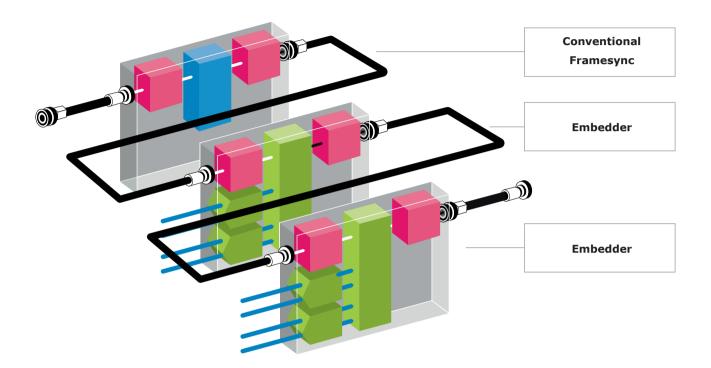
Embedding and the ADD-ON daisy chain bus

One of the unique features the Synapse system offers is the ability to embed audio (and other future data formats) into a master card. This master card can be for instance a frame synchronizer or a A/D converter. This feature has become especially cost-effective in combination with HD and SD functions.

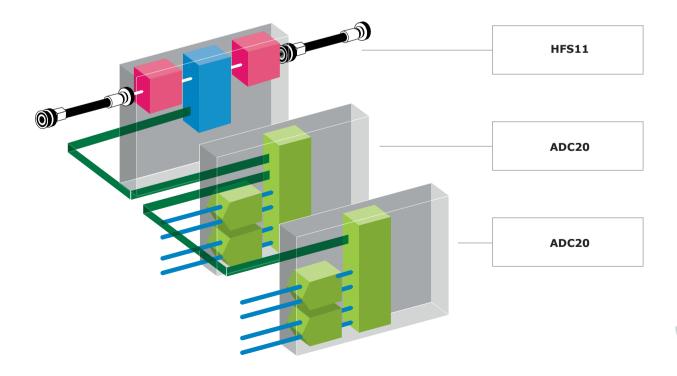

The bus PCB and ADD-ON functionality

The Synapse frame has an internal bus PCB comprising a central (passive) interface between the power supply, the front panel control, the cards and the I/O card. Above this there is a slot-to-slot connection. The dedicated wires running from slot-to-slot provide the opportunity to send signals to and from a card placed immediately on the right-hand side. With this topology, AXON can embed into the existing logic core of a composite decoder and skip two full re-clocking stages and serial to-parallel/parallel-to-serial conversions.

All slots are coded so that each card can be readily located. The control interface provides full control, stores settings and transmits warning information to the front panel and external devices. It also carries the references and provides a passive inter-slot bus to transport data from one slot to the next.


4.1 Embedding and the ADD-ON daisy chain bus

The unique add-on principle that lowers cost and increases signal integrity.



- The daisy chain ADD-ON bus is passive, guaranteeing absolute stability
- The ADD-ON principle can be started anywhere in the frame
- The ADD-ON card is placed immediately on the right side of a master card (front view)
- Up to sixteen channels of audio can be transported to or from a master card with a maximum of four ADD-ON cards
- This topology on average saves 15-40% in cost to customers

Conventional embedding of 8 analog signals with 2 cascaded embedders

Synapse embedding of 8 analog audio signals with 2 ADD-ON cards

4.2 ADD-ON examples

Explaining arrows and color codes

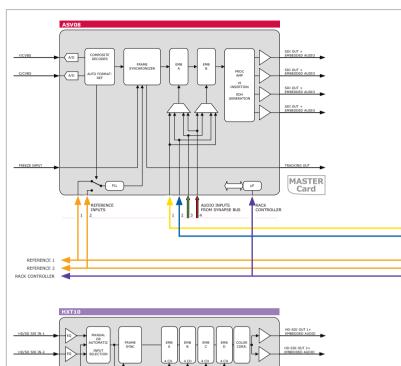
AXON provides a comprehensive listing of the modular functions that the Synapse system offers. The description of the functions per module is accompanied by a block schematic to provide you with a quick overview of the possibilities. The following color convention applies to the arrows:

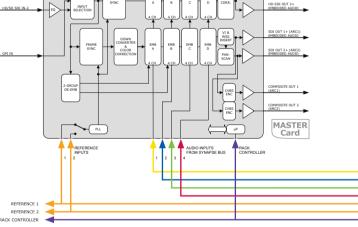
- Black (in the cards descriptions): defines the I/O connections on the back panel
- Purple: defines internal rack control
- Orange: is used for reference inputs
- Yellow: indicates the first 'add-on' audio pair (in- or output)
- Blue: indicates the second 'add-on' audio pair (in- or output)
- Green: indicates the third `add-on' audio pair (in- or output)
- Red: indicates the fourth 'add-on' audio pair (in- or output)

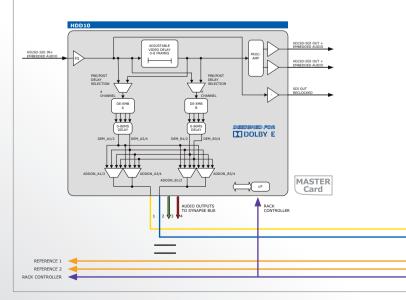
Synapse bus

The ADD-ON principle can be used in several ways.

Example 1

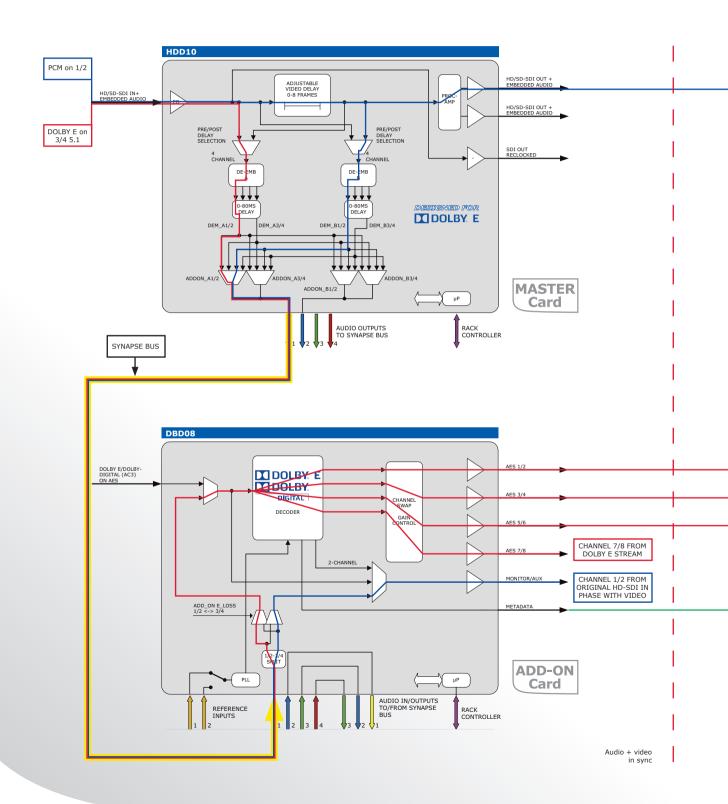

An ASV08 is used to decode CVBS and embed 8 channels of analog audio via 2 ADC20 ADD-ON cards.

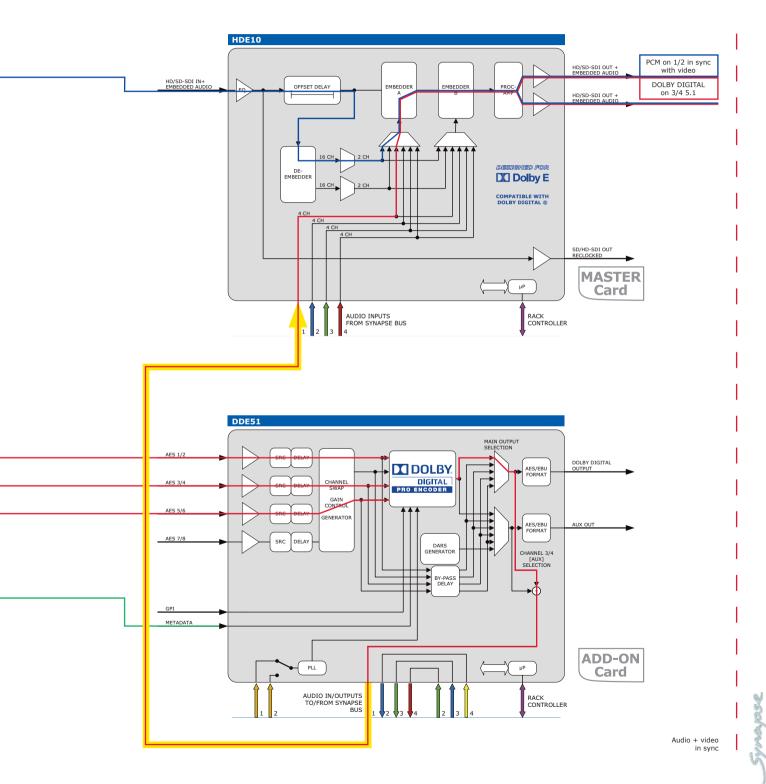

Example 2


A truck transmission application where an HXT10 is used to provide a synchronous HD-SDI, SD-SDI and CVBS signal. The 2 DIO48 ADD-ON cards are used to inject a total of 16 channels via 8 AES/EBU streams.

Example 3

This application shows a dual Dolby E de-embedding and de-coding with controlled lip-sync. The two Dolby E streams that are part of the incoming HD-SDI stream are de-embedded before the video delay block of the HDD10. If additional PCM streams are available, they also can be de-embedded after the video delay block and presented on the monitor outputs of the DBD08. Full lip-sync is maintained with this method.

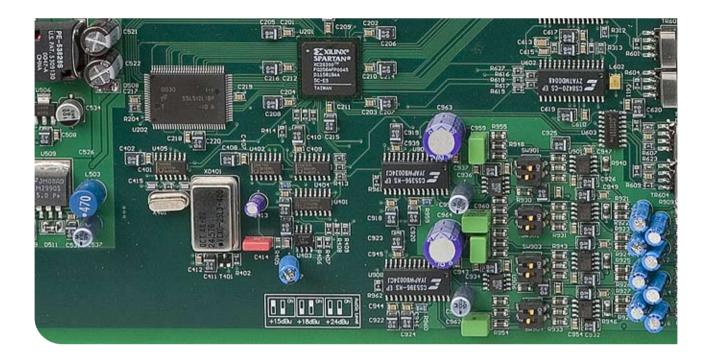



Synapse

4.3 Synapse, Dolby[®] and the internal ADD-ON daisy chain bus

Synapse has probably the most extensive Dolby based infrastructure. Beside several discrete Dolby encoding and decoding cards, Synapse also offers a range of Dolby application specific "master cards".

These cards are the ideal building blocks for a Dolby E, or Dolby Digital application. The following example shows how we de-embed Dolby E. Decode Dolby E, and encode the discrete audio to Dolby Digital to re-embed this in the serial digital (HD) domain. *Note: After de-embedding and decoding to discrete audio, video and audio are in absolute sync (lip-sync) with one frame delay. After encoding to Dolby Digital again in sync with 200 ms of propagation delay.*



Optimise design

Increasing the capabilities and speed of technology within the same PCB space is the name of the game. Our designs have changed dramatically in the last few years to optimise new developments such as 3Gb/s. We can now put 1,400 components on a PCB, pushing the performance benchmark that our developers want to make evermore incredible and innovative products.

Paul van Avesaath

PCB Designer



5. High quality

AXON uses the finest components in building the Synapse range. Our products are developed for 24/7 use and to survive in sometimes difficult environments such as OB-Vans. Signal integrity is one of those key differentiators that defines the product's quality. That is why we use true 75 Ohm contacts between the Synapse card and connector panel. These coaxial contacts guarantee a high return-loss and therefore allow extremely long cable (up to 160m/480ft) unmatched in the industry.

Synapore

6. Fits the future

The constant improvements and enhancements that we put into the firmware on our Synapse cards are shared throughout the total customer base. Every Synapse user benefits from this life-time free upgrade policy. Just visit www.axon.tv for the latest updates of your 'future proof' Synapse card.

The modules

On the previous pages, the Synapse concept with its frames, the control, and the topology of combining modules is explained. These properties are fundamental to the powerful Synapse system. On the next pages you can find the ingredients of an extensive and flexible range of hot swappable modules in different flavours. This range is constantly being expanded and enhanced. Please refer to our website for the latest updates and specifications.

www.axon.tv

Can be used as a master card

Can be used as an ADD-ON card

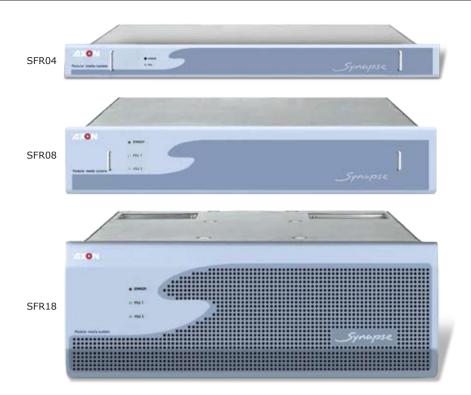
Product is 3Gb/s capable or upgradeable

2 Identical channels on a single card

Product is compatible with Dolby E streams

Product is compatible with Dolby Digital Plus streams

Product is 1.5Gb/s capable


Linux is also used as an embedded OS

Product is designed especially for Dolby E streams

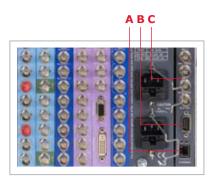
Product is compatible with Dolby Digital streams

19" rack frames: 4, 8 and 18 slots

The SFR04, SFR08 and SFR18 are the generic module holders for the Synapse system.

The SFR04 is a 1 RU rack with 4 card slots, the SFR08 is a 2 RU frame with 8 slots, and the SFR18 is our most dense frame with 18 slots in 4 RU. These frames incorporate several unique functions that stand out from the conventional frames found in most other card based infrastructure products.

- Central genlock input for all cards that require a reference.
- 2 for the SFR08 and SFR18, one for the SFR04
- Ethernet connection for remote control, setup and maintenance
- GPI outputs for alarm and power supply failure
- Auto input range power supply (redundant for SFR08 and SFR18)
- Full control of all card and frame parameters through intuitive GUI on inside front panel.
- Internal Synapse ADD-ON daisy chain bus for audio, GPI and multiview applications


Built-in Ethernet

1 or 2 power supplies

Independent AC inlets

Central genlock (A)

(2 and 3 level sync and word clock) The Synapse range has a built-in reference distribution system (dual for the SFR18, SFR08 and single for the SFR04).

Ordering information

- SFR04: 19"-1RU housing with 4 slots, includinguding rack controller (RRC04) and 1 power supply unit
- SFR04S: 19"-1RU housing with 4 slots, including rack controller (RRS04) and 1 power supply unit, SNMP compatible
- SFR08: 19"-2RU housing with 8slots, including rack controller (RRC08 and 1 power supply unit
- SFR08S: 19"-2RU housing with 8 slots, including rack controller (RRS08) and 1 power supply unit, SNMP compatible
- SMP50: Extra power supply unit for SFR08
- SFR18: 19"-4RU housing with 18 slots, including rack controller (RRC18) and 1 power supply unit
- SFR18S: 19"-4RU housing with 18 slots, including rack controller (RRS18) and 1 power supply unit, SNMP compatible

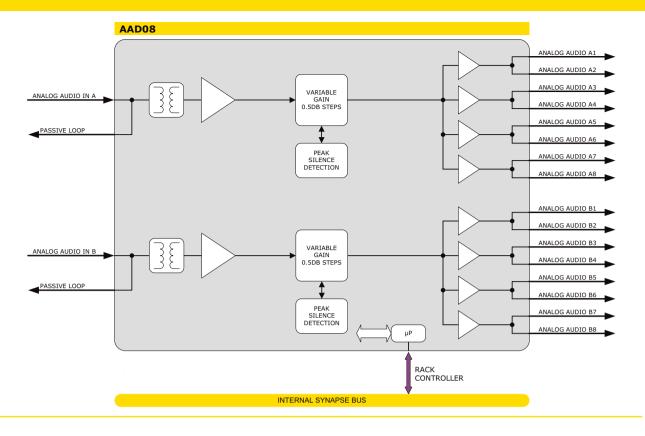
SMP80: Extra power supply unit for SFR18

GPI/O out (B) Power supply failure and programmable GPI's can be monitored.

Ethernet (C) Built-in Ethernet based networking.

Specifications

Dimens	ions
height	SFR18: 176 mm (6.93") (4RU)
	SFR08: 87 mm (3.43") (2RU)
	SFR04: 44 mm (1.73") (1RU)
Width	
	SFR18: 483 mm (19")
	SFR08: 483 mm (19")
	SFR04: 483 mm (19")
Depth (in	ncluding front lid)
	SFR18: 528 mm (20.79")
	SFR08: 537 mm (21.14")
	SFR04: 532 mm (20.94")
Depth (e	xcluding front lid)
	SFR18: 510 mm (20.08")
	SFR08: 492 mm (19.37")
	SFR04: 494 mm (19.45")


Weight

SFR04	8.5 kg (18.7 lbs)
SFR08	11.5 kg (25.3 lbs)
SFR18	11 kg (24.2 lbs) -
	(new for Q1-2009) yes less
	weight then the SFR08

Power	
SFR04	Input: AC100 - 240V ~ 4 - 1.5A
	Frequency: 50 – 60 Hz
	Output: DC 32V - 8A
	Fuse: 250V / 6.3 AT - 2x
	Maximum output: 250 Watt
SFR08	Input: AC100 - 240V ~ 4 - 1.5A
	Frequency: 50 – 60 Hz
	Output: DC 32V - 8A
	Fuse: 250V / 6.3 AT - 1x
	Maximum output: 150 Watt
SFR18	Input: AC100 - 240V ~ 4 - 1.5A
	Frequency: 50 – 60 Hz
	Output: DC 32V - 8A
	Fuse: 250V / 6.3 AT - 2x
	Maximum output: 250 Watt

Miscellaneous

Operating	
temperature	0° to 40° C environmental
	temperature (32° to 104° F)
Storage	-20° to 70 ° environmental
	temperature (-4° to 158° F)
Fan units	SFR18: 2 in frame, 1 in each PSU,
	5 in front (new for Q1-2009)
	SFR08: 3 in frame, 1 in each PSU
	SFR04: 1 in the PSU

AAD08 Dual channel 1 to 8 analog audio distribution amplifier

The AAD08 Analog Audio Distribution Amplifier provides dual channel 8 way distribution. It utilizes high quality components to provide high reliability and excellent audio performance. The AAD08 features Real Transformers on its inputs, Variable Gain, Peak Detection and Silence Detection.

- 8 balanced outputs per channel
- Transformer coupled input
- Low impedance output with transformer properties
- Level control (0.5dB increments)
- Peak detection 0 dBu to 24 dBu
- Silence detection
- 24dBu maximum input level
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

ANALOG AUDIO DISTRIBUTION

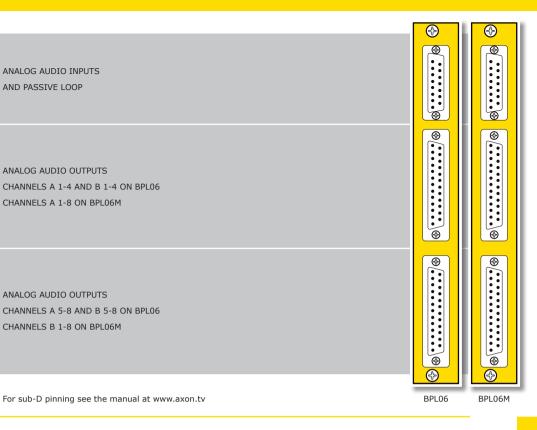
Applications

- Generic analog audio distribution
- Analog audio silence and clipping detection/probing
- Analog audio galvanic isolation / hum suppression

Ordering information

Module:

 AAD08: Dual channel 1 to 8 analog audio distribution amplifier

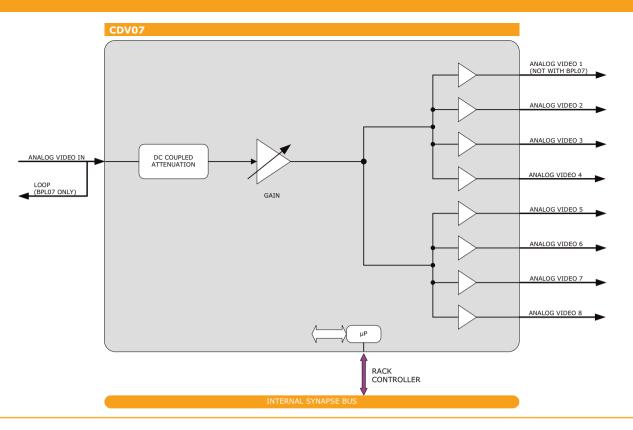

Standard I/O:

BPL06_AAD08:

I/O panel for AAD08 with 4 stereo outputs on sub-D

BPL06M_AAD08:

I/O panel for AAD08 with 8 mono outputs on sub-D



Specifications

Analog audio input		Analog audio output	
Туре	Balanced analog audio	Туре	Balanced analog audio
Number of		Number of	
inputs	2 Transformer coupled	outputs	2
Connector	15 pins female sub-D	Connector	25 pins female sub-D
Impedance	10k Ohms nominal	Impedance	50 Ohms balanced
	(differential)	Signal level	24dBu max
Signal level	24dBu max		
Level control		Miscellaneou	S
range	+30dB to -90dB 0.5dB	Weight	Approx. 250g
	increments	Operating	
Frequency		temperature	0° C to +50° C
response	< ±0.1dB, 20Hz to 20kHz	Dimensions	137 x 296 x 20 mm
	(broadcast quality)		(HxWxD)
Dynamic range	100dB @-60 dBFS		
THD+N	< 0.002% (>96dB) @ 1kHz	Electrical	
CMRR	< 0.003% (> 94dB) @ 20Hz	Voltage	+24V to +30V
	to 20kHz, > 60dB at 1kHz	Power	<8 Watts

AAD08

53

CDV07 Analog video (B&B / Tri-Level) distribution amplifier (word clock DA for high impedance circuits)

The CDV07 is a basic analog distribution amplifier providing a low loss electronically balanced input with loop through when used with the BPL07 or terminated when used with the BPL01. If necessary the input can be used fully floating by unscrewing the tabs on the BPL07.

- Adjustable input gain
- DC coupled
- Compatible with Tri-Level sync
- Compatible with Word clock for high impedance circuits
- Floating inputs and loop through with BPL07
- +/- 6dB gain adjustment
- Input status detection
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

ANALOG VIDEO DISTRIBUTION

Applications

The CDV07 is designed for applications where a cost effective analog video or Black & Burst distribution is needed. The straightforward design enables easy installation and reliable operation.

- Can be used for word clock distribution into high impedance circuits
- Tri-Level sync distribution.

Ordering information

Module:

CDV07: Analog video distribution amplifier

Standard I/O:

BPL01_CDV07: I/O panel for CDV07

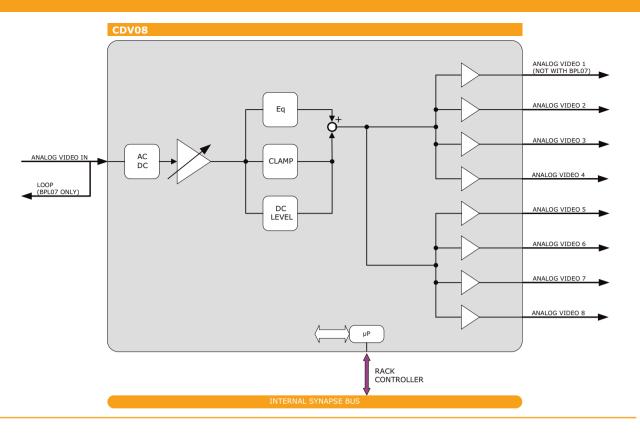
BPL07_CDV07: I/O panel for CDV07 with loop through

	(•
ANALOG VIDEO INPUT	\bigcirc	\bigcirc^{\ast}
ANALOG VIDEO OUTPUT 1(OR LOOP BPL07 ONLY)	\bigcirc	
ANALOG VIDEO OUTPUT 2	\bigcirc	
ANALOG VIDEO OUTPUT 3	\bigcirc	
ANALOG VIDEO OUTPUT 4	\bigcirc	
ANALOG VIDEO OUTPUT 5	\bigcirc	
ANALOG VIDEO OUTPUT 6	\bigcirc	
ANALOG VIDEO OUTPUT 7	\bigcirc	\odot
ANALOG VIDEO OUTPUT 8	\bigcirc	

BPL01

BPL07

Specifications


Analog input		Return loss	Measured with Mini Circuits
Input levels	700 mV. White to black.		ZFDC-15-6-75
	Nominal 1 V sync tip to white.		> 37 dB, @ 5 MHz
	75 Ohms terminated with		> 34 dB, @ 15 MHz
	BPL01. Floating with BPL07		> 29 dB, @ 30 MHz.
Return loss	Measured with Mini Circuits		Other outputs 75 Ohm
	ZFDC-15-6-75		terminated
	> 40 dB, @ 5 MHz		
	> 36 dB, @ 15 MHz	Performance	
	> 28 dB, @ 30 MHz	Frequency	
	75 Ohms terminated	response	within 0,4 dB, 0 to 5 MHz.
Common mode		Signal to noise	
rejection (CMR)	Measured with BPL07 BNC	ratio	66.5 dB. 10KHz to 6MHz,
	inputs floating CM signal on		Tektronix VM700T
	both inner and outer leads.	Bar tilt	0,1 %
	CM input impedance 5K Ohms.	Gain stability	1%
	10 KOhms each input to GND		
	> 68 dB, @ 50Hz	Miscellaneous	
	> 55 dB, @ 5 MHz	Weight	Approx. 250g
	> 40 dB, @ 15 MHz	Operating	
	> 30 dB, @ 30 MHz	temperature	0° C to +50° C
		Dimensions	137 x 296 x 20 mm (HxWxD)
Analog output	s with BPL01(8x) with	Word-clock di	stribution
BPL07(7x)		Input voltage	Maximum 5V
Output levels	1 V sync tip to white,	Output voltage	Maximum 3.5V into high

75 Ohms terminated

Input voltage	Maximum 5V
Output voltage	Maximum 3.5V into high
	impedance (1K Ohms)

Electrical

Voltage	+24V to +30V
Power	<5 Watts

CDV08 Analog video distribution amplifier with cable equalizer

The CDV08 is an enhanced analog distribution amplifier providing a low loss electronically balanced input with loop through when used with the BPL07 or terminated when used with the BPL01. If necessary the input can be used fully floating by unscrewing the tabs on the BPL07.

- Adjustable input gain
- AC or DC coupled
- Equalizer for up to 300 meter of RG59 or equivalent cable
- Equalizer level of up to 230%
- Floating inputs and loop through with BPL07
- +/- 3 dB gain adjustment
- Input status detection
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

ANALOG VIDEO DISTRIBUTION

Applications

The CDV08 is designed for applications where a long cable length is used and analog video or Black & Burst signals need equalization. The straightforward design enables easy installation and reliable operation.

Ordering information

Module:

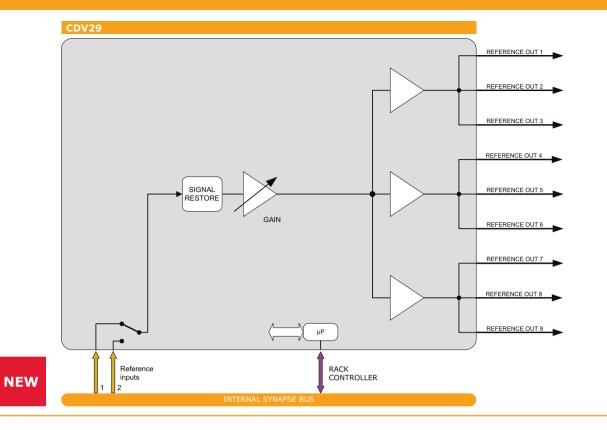
 CDV08: Analog video distribution amplifier with cable equalizer

Standard I/O:

- BPL01_CDV08:
 I/O panel for CDV08
- BPL07_CDV08:
 I/O panel for CDV08 with loop through

ANALOG VIDEO INPUT	0	Ô
ANALOG VIDEO OUTPUT 1(OR LOOP BPL07 ONLY)	0	
ANALOG VIDEO OUTPUT 2	0	
ANALOG VIDEO OUTPUT 3	0	Ô
ANALOG VIDEO OUTPUT 4	0	
ANALOG VIDEO OUTPUT 5	0	
ANALOG VIDEO OUTPUT 6	\bigcirc	
ANALOG VIDEO OUTPUT 7	0	\bigcirc
ANALOG VIDEO OUTPUT 8	0	\bigcirc
		\bigcirc

BPL01 BPL07


Specifications

Analog input		Analog output	s with BPL01(8x) with
Input levels	700 mV. White to black.	BPL07(7x)	
	Nominal 1 V sync tip to white.	Output levels	1 V sync tip to white,
	75 Ohms terminated with		75 Ohms terminated
	BPL01 Floating with BPL07	Return loss	Measured with Mini Circuits
Return loss	Measured with Mini Circuits		ZFDC-15-6-75
	ZFDC-15-6-75		> 37 dB, @ 5 MHz
	> 40 dB, @ 5 MHz		> 34 dB, @ 15 MHz
	> 36 dB, @ 15 MHz		> 29 dB, @ 30 MHz.
	> 28 dB, @ 30 MHz		Other outputs 75 Ohms
	75 Ohms terminated		terminated
Common mode			
rejection (CMR)	Measured with BPL07 BNC	Performance	
	inputs floating CM signal on	Frequency	
	both inner and outer leads.	response	within 0,4 dB, 0 to 5 MHz.
	CM input impedance	Signal to noise	
	5 kOhms. 10 kOhms each	ratio	66.5 dB. 10KHz to 6MHz,
	input to GND		Tektronix VM700T
	> 68 dB, @ 50Hz	Bar tilt	0,1 %
	> 55 dB, @ 5 MHz	Gain stability	1%
	> 40 dB, @ 15 MHz		
	> 30 dB, @ 30 MHz	Miscellaneous	
		Weight	Approx. 250g
		Operating	
		temperature	0° C to +50° C

Electrical

Voltage	+24V to +30V
Power	<5 Watts

Mapase

CDV29 Reference (B&B / Tri-Level) distribution amplifier with 9 outputs and Synapse reference inputs

The CDV29 is a basic analog distribution amplifier providing 9 buffered outputs via the use of the internal Synapse Reference distribution system.

- 9 outputs
- Adjustable input gain
- DC restored
- Compatible with Tri-Level sync
- +/- 6dB gain adjustment
- Input status detection
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Applications

The CDV29 is designed for applications where a cost effective analog Tri-level or Bi-level (B&B) distribution is needed. The straightforward design enables easy installation and reliable operation.

Tri-level sync distribution

Ordering information

Module:

 CDV29: Analog video distribution amplifier with
 9 outputs and Synapse reference inputs

Standard I/O:

BPL01_CDV29: I/O panel for CDV29

REFERENCE OUTPUT 1	
REFERENCE OUTPUT 2	
REFERENCE OUTPUT 3	
REFERENCE OUTPUT 4	
REFERENCE OUTPUT 5	
REFERENCE OUTPUT 6	
REFERENCE OUTPUT 7	
REFERENCE OUTPUT 8	
REFERENCE OUTPUT 9	

Performance

Power

within 0,4 dB, 0 to 5 MHz.

66.5 dB. 10KHz to 6MHz, Tektronix VM700T

0,1 %

Approx. 250g

0° C to +50° C

+24V to +30V

<4 Watts

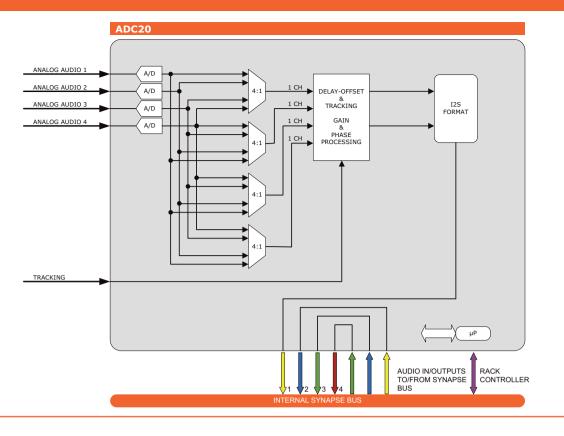
137 x 296 x 20 mm (HxWxD)

1%

BPL01

 \bigcirc

Specifications


Reference input through RRC

iterer entee in		
Number of		Frequency
inputs	2 on SFR18, 2 on SFR18 and	response
	1 on SFR04	Signal to
Input levels	700 mV. White to black.	noise ratio
	nominal 1 V sync tip to	
	white. 75 Ohms terminated	Bar tilt
	through loop	Gain stability
Return loss	Measured with Mini Circuits	
	ZFDC-15-6-75	Miscellaneous
	> 40 dB, @ 5 MHz	Weight
	> 36 dB, @ 15 MHz	Operating
	> 28 dB, @ 30 MHz	temperature
	75 Ohms terminated	Dimensions
Analog outpu	uts with BPL01 (9x)	Electrical
Number of		Voltage

Number of	
outputs	9
Output levels	1 V sync tip to white,
	75 Ohms terminated
Return loss	Measured with Mini Circuits
	ZFDC-15-6-75
	> 37 dB, @ 5 MHz
	> 34 dB, @ 15 MHz
	> 29 dB, @ 30 MHz.
	Other outputs 75 Ohms
	terminated

CDV29

ADC20 4 channel Analog audio input Synapse ADD-ON card

The ADC20 is an analog audio to digital audio converter with tracking delay and delay offset. The delay offset range is from 0 ms up to 5200 ms at 48 kHz. This card can only be used as an ADD-ON card. In this mode the card is set to embed audio signals and acts as an Analog input board that feeds a master card positioned to the left, with embedding functionality. The SEB10, for example, can perform an embedding function with the ADC20 as its input card. The ADC20 converts the analog audio into AES/EBU signals and puts it on the Synapse bus. The signals can be embedded into the SDI data stream. Other cards with an embedding function are: ASV08, ASV12, ASV22, HFS11 and more. The compatible cards of this product can be recognized by a yellow arrow pointing towards the block schematic.

- 24-bit audio conversion
- 48k sampling locked to Master Card
- Tracking audio delay
- Adjustable audio delay offset up to 5200ms in 1ms increments

ADD-ON Card

- Phoenix or sub-D input connectors
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Input channel swapping
- Analog reference levels adjustable for 12, 15, 18 and 24dBu (software)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Complementary card to:

- SFS11, HFS11
- SEB10, SEB11, SEB20, HEB20
- ASV08, ASV12, ASV22, ASM10
- All embedding master cards

AUDIO A/D CONVERSION

Applications

The ADC20 is a generic analog audio ADD-ON card for dedicated Synapse master cards that have an embedding function.

Ordering information

Module:

 ADC20: 4 channel analog audio input Synapse ADD-ON card

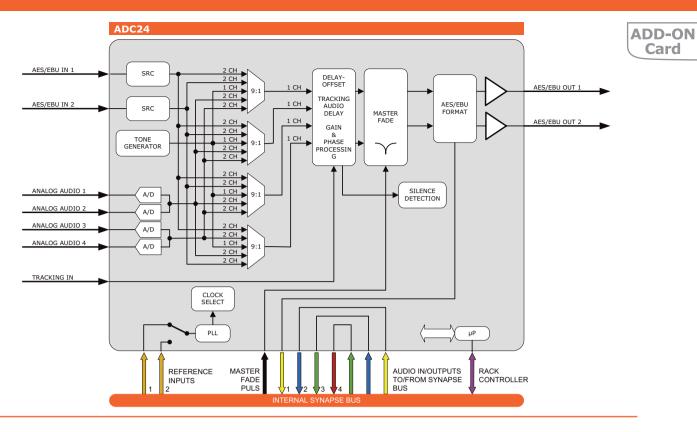
Standard I/O:

 BPL04_ADC20:
 I/O panel for ADC20 with analog audio input

BPL05D_ADC20: I/O panel for ADC20 with analog audio in on sub-D

	{	€
TRACKING INPUT	Ô	
ANALOG INPUT 1		
ANALOG INPUT 2		
ANALOG INPUT 3		
ANALOG INPUT 4		
		®
		●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●<

BPL04 BPL05D


Specifications

Analog audio input		Master card output	
Туре	Balanced analog audio	Number of	
Number of		outputs	2
inputs	4	Connector	NA
Connector	Removable terminal strip or	Resolution	24 bits
	15 pins and 25 pins female	Sampling rate	48KHz synchronous to
	sub-D		master video card
Impedance	10k Ohms nominal (differential)	Minimum	
Sampling rate	48KHz	Input/output	
Signal level	0dB FS => 12dBu, 15dBu,	delay	2.5ms
	18dBu or 24dBu	Maximum	
Level control		Input/output	
range	+12dB to -60dB 0.25dB	delay	5400 ms
	increments		
Frequency		Miscellaneous	5
response	< ±0.1dB, 20Hz to 20kHz	Weight	Approx. 250g
	(broadcast quality)	Operating	
Dynamic range	100dB @-60 dBFS	Temperature	0° C to +50° C
THD+N	< 0.002% (>96dB) @ 1kHz,	Dimensions	137 x 296 x 20 mm (HxWxD)
	-1dB FS		
	< 0.002% (> 96dB) @ 20Hz	Electrical	
	to 20kHz, -1dB FS	Voltage	+24V to +30V
CMRR	> 60dB at 1kHz	Power	8 Watts

ADC20

support

61

ADC24 4 channel 24-bit audio A/D converter with AES/EBU bypass inputs

The ADC24 is a multi-functional product. Its basic function is the conversion of analog audio to AES/EBU digital audio. In addition to the Analog inputs it has AES/EBU inputs with a sample rate converter (SRC). The ADC24 has a tracking audio delay, and a delay offset of up to 650ms at 96kHz or 1300ms at 48kHz. It can also perform the Synapse ADD-ON function. In ADD-ON mode the card acts as an analog or digital audio input board that feeds a master card positioned one slot left of the ADD-ON card. The ADC24 for example acts as a analog audio embedder if used in combination with the ASV12, SFS11 or HFS11 (many more options available). The audio data that enters the Synapse bus to a master card is identical to the data present in the local AES/EBU outputs. The AES/EBU in- and outputs are available on 75 Ohms BNC or 110 Ohms on screw terminals and sub-D connectors. This selection is determined by the type of connector panel.

- 24-bit audio conversion
- Any input to any output selection (This can be a mix of analog and digital signals)

Card

- AES/EBU inputs with selectable SRC (32 to 96kHz sampling)
- 96kHz and 48kHz sample clock locked to: B&B ref or word clock ref. (In ADD-ON, only 48kHz)
- 96kHz and 48kHz sample clock in free running mode (In ADD-ON, only 48kHz)
- Available with 110 Ohms (phoenix or sub-D) or 75 Ohms (BNC) AES/EBU
- In- and outputs analog reference levels adjustable for 12, 15, 18 and 24dBu
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Can be used as a Synapse ADD-ON card
- Adjustable audio delay offset up to 1300ms in 1ms increments (@48kHz)
- Tracking audio delay on dedicated BNC input
- 1kHz tone generator
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Complementary products:

- SFS11, HFS11
- SEB10, SEB11, SEB20, HEB20
- ASV08, ASV12, ASV22, ASM10
- All embedding master cards

AUDIO A/D CONVERSION

Applications

- Stand alone high quality 4 channel Audio A/D conversion
- The ADC24 is also a generic analog and digital audio ADD-ON card for dedicated Synapse master cards that have an embedding function
- AES/EBU proc-amp
- Tone generator for service applications

Ordering information

Module:

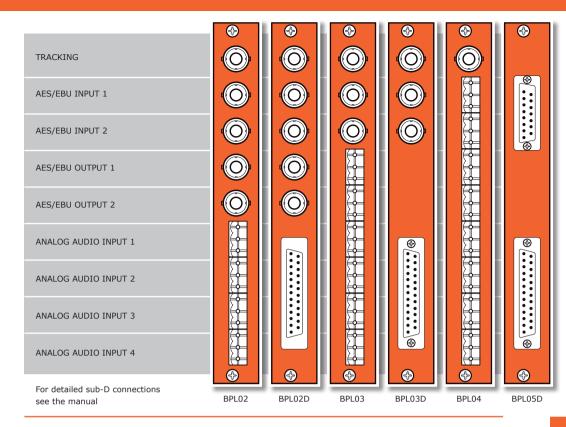
ADC24: 4 channel 24-bit A/D converter with AES/EBU bypass inputs

Standard I/O:

- BPL02 ADC24:
 - I/O panel for ADC24 with balanced analog audio in, unbalanced AES/EBU in and unbalanced AES/EBU out
- BPL02D_ADC24:

I/O panel for ADC24 with balanced analog audio in on sub-D, unbalanced AES/ EBU in and unbalanced AES/EBU out

BPL03_ADC24:


I/O panel for ADC24 with balanced analog audio in, balanced AES/EBU out and unbalanced AES/EBU in

BPL03D_ADC24:

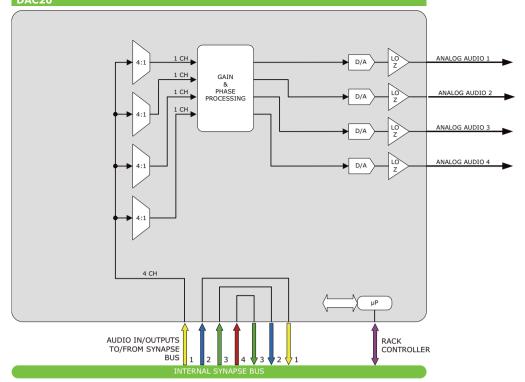
I/O panel for ADC24 with balanced analog audio in, balanced AES/EBU out on sub-D and unbalanced AES/EBU in

BPL04_ADC24: I/O panel for ADC24 with balanced analog audio in, balanced AES/EBU in and balanced AES/EBU out

- BPL05D_ADC24:
 - I/O panel for ADC24 with balanced analog audio in, balanced AES/EBU in, balanced AES/EBU out and tracking on sub-D

Specifications

Analog	audio	input	
_		D 1	


Туре	Balanced analog audio	Resolution	24 bits when AES inputs
Number of			selected, 20 bits in Master/
inputs	4		ADD-On mode
Connector	Removable terminal strip or	Minimum input/	
	female sub-D	output delay	2.5ms
Impedance	10k Ohms nominal (differential)	Number of	
Sampling rate	48KHz	inputs	2
Signal level	0dB FS => 12dBu, 15dBu,	Impedance	110 Ohms or 75 Ohms
	18dBu or 24dBu	Level	0.2V to 1V nom for BNC, 2V
Level control			to 7V for balanced operation
range	+12dB to -60dB 0.25dB		
	increments	AES audio output	
Frequency		Number	
response	< ±0.1dB, 20Hz to 20kHz	of Outputs	2
	(broadcast quality)	Connector	BNC, Screw terminal or
Dynamic range	100dB @-60 dBFS		female Sub-D (balanced)
THD+N	< 0.002% (>96dB) @ 1kHz,	Resolution	24 bits
	-1dB FS	Sampling rate	48KHz synchronous
	< 0.002% (> 96dB) @ 20Hz	Minimum input/	
	to 20kHz, -1dB FS	output delay	2.5ms
CMRR	> 60dB at 1kHz	Maximum input/	
		output delay	1300 ms
AES audio inp	ut		

AES audio inpu	11		
Connector	BNC, Screw terminal or	Miscellaneous	
	female Sub-D (balanced)	Weight	Approx. 250g
Standard	AES-1992 for balanced	Operating	
	synchronous or asynchronous	temperature	0° C to 50° C
	PCM/AES, SMPTE 276M for	Dimensions	137 x 296 x 20 mm (HxWxD)
	single ended synchronous or		
	asynchronous PCM/AES	Electrical	
Number of inputs	2	Voltage	+24V to +30V
Sampling rate	32 kHz to 96 kHz Synchronous	Power	<11 Watts
	48 kHz in Master/ADD-On mode		

63

1

DAC20

DAC20 4 channel analog audio output ADD-ON card

The DAC20 is an ADD-ON module with analog audio outputs. It has no stand alone function, but is entirely designed to function as an ADD-ON card to the Synapse master cards. The master card is positioned to the left of the DAC20 and is required to have a de-embedding function. Cards that have a de-embedding function are the SDB20, SDB10, SAV10, SFS12/22, HFS12, SAS30, SAS10 etc. These cards can be recognized by a yellow arrow pointing outward the block schematic.

- 24-bit audio D/A conversion
- 48k sampling locked to Master Card
- Phoenix or sub-D output connectors
- Adjustable audio gain (in 0.25dB steps) and phase (0-180 deg)

ADD-ON Card

- Analog reference levels adjustable for 12, 15, 18 and 24dBu (software)
- Input channel swapping
- Clip indication
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Complementary card to:

- SFS12, HFS12
- SDB10, SDB20, HDB20
- SCV12, SAM10
- All de-embedding master cards

AUDIO D/A CONVERSION

Applications

The DAC20 is a generic analog audio ADD-ON card for dedicated Synapse master cards that have a de-embedding function.

Ordering information

Module:

DAC20: 4 channel analog audio output Synapse ADD-ON card

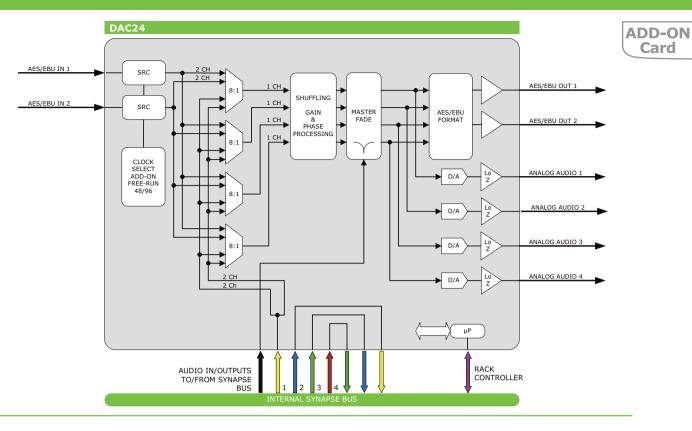
Standard I/O:

BPL04_DAC20: I/O panel for DAC20 with analog audio out

BPL05D_DAC20:

I/O panel for DAC20 with analog audio out on sub-D

	ا	
	\bigcirc	
ANALOG OUTPUT 1		®
ANALOG OUTPUT 2		
ANALOG OUTPUT 3		
ANALOG OUTPUT 4		8
	₽	Θ


BPL04 BPL05D

Specifications

Analog audio input		Miscellaneous		
Туре	Balanced analog audio	Weight	Approx. 250g	
Number of		Operating		
outputs	4	temperature	0 °C to +50 °C	
Connector	removable terminal strips or	Dimensions	137 x 296 x 20 mm (HxWxD	
	female sub-D			
Impedance	50 Ohms balanced	Electrical		
Signal level	0dB FS => 12dBu, 15dBu,	Voltage	+24V to +30V	
	18dBu or 24dBu	Power	<8 Watts	
Frequency				
response	< ±0.05dB (20Hz to 20kHz)			
Gain mismatch	< 0.25 dB @997Hz, -20dBFS			
	Multi channel			
Dynamic range	>100 dB @ -60dBFS			
THD+N	< 92dB @ 1kHz, -1dBFS			
Crosstalk	< -100dB (20Hz to 20kHz)			
DC offset	< ±30mV			
Dynamic range	> 97dB @-60dBFS			

DAC20

DAC24 4 channel 24-bit audio D/A converter with AES/EBU outputs

The DAC24 is a multi-functional product. Its basic function is the conversion of AES/EBU digital audio to analog audio. In addition to the analog outputs it has AES/EBU outputs and offers the Synapse ADD-ON function. In ADD-ON mode the card acts as an input board that is fed by a master card that is positioned one slot left of the ADD-ON card. The DAC24 for example acts as an analog and digital audio de-embedder when used in combination with the AXON SAV12 or SFS12 (more options available see below). The AES/EBU in- and outputs are available on 75 Ohms BNC or 110 Ohms screw terminals and sub-D. This selection is determined by the type of connector panel. The BPL02 has 75 Ohms AES/EBU in- and outputs. The user has control over channel selection/swapping, and gain and phase control of all 4 audio channels.

- 24-bit audio conversion
- Additional AES/EBU outputs
- 96kHz and 48kHz sample clock locked to: B&B ref or word clock ref. (in ADD-ON, only 48kHz)
- 96kHz and 48kHz sample clock in free running mode (In ADD-ON, only 48kHz)
- Available with 110 Ohms (phoenix or sub-D) or 75 Ohms (BNC) AES/EBU
- Output analog reference levels adjustable for 12, 15, 18 and 24dBu
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Can be used as a Synapse ADD-ON card
- Individual selection of each mono channel out of the AES/EBU domain
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Complementary card to:

- SFS12, HFS12
- SDB10, SDB20, HDB20
- SCV12, SAM10, HSU10, HSU20, 2HS10
- All de-embedding master cards

AUDIO D/A CONVERSION

Applications

- Generic audio D/A converter, with AES/EBU processed outputs
- ADD-ON D/A converter next to Synapse de-embedding products

Ordering information Module:

DAC24: 4 channel 24 bit audio D/A converter with AES/EBU outputs

Standard I/O:

BPL02_DAC24:

I/O panel for DAC24 with balanced analog audio out, unbalanced AES/EBU in and unbalanced AES/EBU out

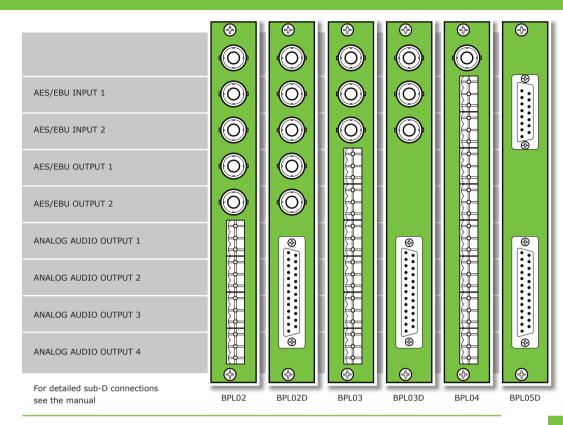
BPL02D_DAC24:

I/O panel for DAC24 with balanced analog audio out on sub-D, unbalanced AES/ EBU in and unbalanced AES/EBU out

BPL03_DAC24:

I/O panel for DAC24 with balanced analog audio out, balanced AES/EBU out and unbalanced AES/EBU in

BPL03D_DAC24:


I/O panel for DAC24 with balanced analog audio out, balanced AES/EBU out on sub-D and unbalanced AES/EBU in

BPL04_DAC24:

I/O panel for DAC24 with balanced analog audio out, balanced AES/EBU in and balanced AES/EBU out

BPL05D_DAC24:

I/O panel for DAC24 with balanced analog audio out, balanced AES/EBU in, balanced AES/EBU out on sub-D and tracking

Specifications

AES audio input

•	
Connector	BNC, Screw terminal or
	female sub-D (balanced)
Standard	AES-1992 for balanced
	synchronous or asynchronous
	PCM/AES, SMPTE 276M for
	single ended synchronous or
	asynchronous PCM/AES
Number of	
inputs	2
Sampling rate	32 kHz to 96 kHz Synchronous
	48 kHz in Master/ADD-On mode
Resolution	24 bits when AES inputs
	selected, 20 bits in Master/
	ADD-On mode
Minimum input/	
output delay	2.5ms
Number of	
inputs	2
Impedance	110 Ohms or 75 Ohms
Level	0.2V to 1V nom for BNC, 2V
	to 7V for balanced operation
Minimum input/	
output delay	3.5ms

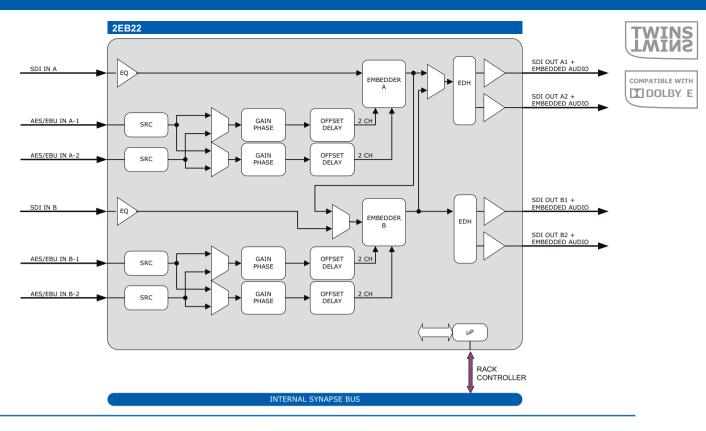
Analog audio output

-	-
Туре	Balanced analog audio
Number of	
outputs	4
Connector	removable terminal strips or
	female sub-D
Impedance	50 Ohms balanced
Signal level	0dB FS => 12dBu, 15dBu,
	18dBu or 24dBu

Frequency

response	$<\pm0.05$ dB (20Hz to 20kHz)
Gain mismatch	< 0.25 dB @997Hz, -20dBFS
	Multi channel
Dynamic range	>100 dB @ -60dBFS
THD+N	< 92dB @ 1kHz, -1dBFS
Crosstalk	< -100dB (20Hz to 20kHz)
DC offset	< ±30mV
Dynamic range	> 97dB @-60dBFS

AES audio output


Number of	
outputs	2
Connector	BNC, Screw terminal or
	female sub-D (balanced)
Resolution	24 bits
Sampling rate	48 or 96kHz synchronous or
	free running
//	
output delay	1 ms

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0° C to +50° C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<12 Watts

2EB22 Dual 4 channel digital audio embedder

The 2EB22 contains two fully independent digital audio embedders. This card allows for 36 embedders in 4 Rack Units, and has its counterpart in the mirror image 2DB22. The AES/EBU inputs can handle sample rates between 32 and 96 kHz. This SRC can be by-passed for Dolby E or other transparent applications.

- 2 x 2 AES/EBU intputs
- Sample rate converter
- 110 Ohm balanced digital audio inputs on sub-D
- 2 x 2 embedded SDI output
- Single channel mode for embedding 4 x AES/EBU signals on a single SDI
- Audio level and phase control
- Append and overwrite modes
- Individual audio channel delay up to 2600ms in 1 ms intervals
- SRC on AES inputs with transparent (bypass) mode
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel

EMBEDDING

audio for video

Applications

- Generic multi channel digital audio embedding
- 2 group (4 x AES/EBU) embedding
- High density applications as in OB-Trucks

Ordering information Module:

 2EB22: Dual 4 channel digital audio embedder

Standard I/O:

- BPL12T2_FC/PC_2EB22: I/O panel for 2EB22 with 2 fiber transmitters on FC/PC
- BPL12T2_SC_2EB22:
 I/O panel for 2EB22 with
 2 fiber transmitters on SC

Fiber intputs:

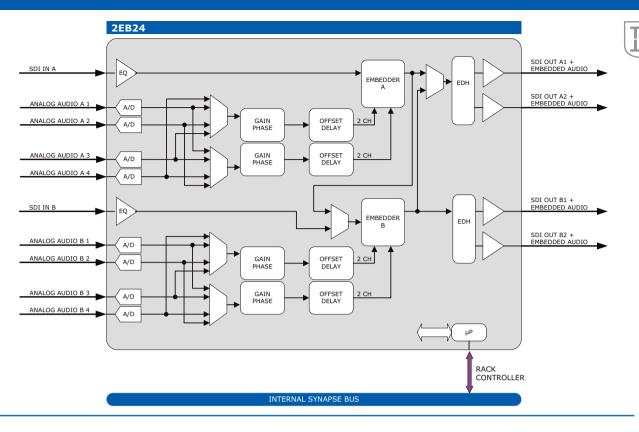
BPL12R2_FC/PC_2EB22:
 I/O panel for 2EB22 with
 2 fiber receivers on FC/PC

BPL12R2_SC_2EB22:
 I/O panel for 2EB22 with
 2 fiber receivers on SC

CVBS outputs:

BPL12C2_2EB22:
 I/O panel for 2EB22 with
 2 CVBS output

SDI OUTPUT A-1 EMBEDDED	
SDI OUTPUT A-2 EMBEDDED (OPTIONAL FIBER OR CVBS OUTPUT)	
SDI INPUT B (OPTIONAL FIBER INPUT)	
SDI OUTPUT B-1 EMBEDDED	
SDI OUTPUT B-2 EMBEDDED (OPTIONAL FIBER OR CVBS OUTPUT)	
BALANCED DIGITAL AUDIO INPUT	


For fiber connectivity see www.axon.tv

SDI INPUT A (OPTIONAL FIBER INPUT)

Specifications

Serial video i	nput	AES Input	
Standard	625/50 or 525/59.94 SMPTE	Inputs	4 (2 per channel)
	259M-C (270Mb/s) with	Connector	26 pins female sub-D
	SMPTE 272M embedded audio		(balanced)
Number of		Standard	AES-1992 for balanced
inputs	2 (1 per channel)		synchronous or
Equalization	Automatic to 300m		asynchronous PCM/AES
	@ 270Mb/s with Belden	Input Level	2V to 7V for balanced operation
	1694A or equivalent cable	Coupling	Transformer
Return loss	> 15dB up to 270MHz	Impedance	110 Ohms
		Sampling	
SD serial vide	eo output	Frequency	32kHz to 96kHz or 48kHz
Standard	625/50 or 525/59.94 SMPTE		locked to video SRC=off
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio	Miscellaneou	S
Number of		Weight	Approx. 250g
outputs	4 (2 per channel)	Operating	
Signal level	800mV nominal	temperature	0° C to +50° C
DC offset	0V ±0.5V	Dimensions	137 x 296 x 20 mm (HxWxD)
Rise/fall time	800ps nominal		
Overshoot	< 10% of amplitude	Electrical	
Return loss	> 15dB up to 270MHz	Voltage	+24V to +30V
		Power	7 Watts

2EB24 Dual 4 channel analog audio embedder

The 2EB24 contains two fully independent analog audio embedders. This card allows for 36 embedders in 4 Rack Units, and has its counterpart in the mirror image 2DB24. The Analog inputs can handle up to +24dBu and are converted to digital through 24-bit high quality A/D converters.

- 2 x 4 Analog audio inputs
- Analog audio on sub-D
- 2 x 2 embedded SDI output
- Single channel mode for embedding 8 analog audio signals on a single SDI
- Audio level and phase control
- +24 dBu, +18 dBu, + 15 dBu and +12 dBu Analog input levels for 0 dBFS
- Append and overwrite modes
- Individual audio channel delay up to 2600ms in 1 ms intervals
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel

EMBEDDING

audio for video

Applications

- Generic multi channel analog audio embedding
- 2 group (8 x analog audio) embedding
- High density applications as in OB-Trucks

Ordering information Module:

2EB24: Dual 4 channel analog audio embedder

Standard I/O:

BPL12_2EB24: I/O panel for 2EB24

Fiber outputs:

- BPL12T2_FC/PC_2EB24:
 I/O panel for 2EB24 with
 2 fiber transmitters on FC/PC
- BPL12T2_SC_2EB24:
 I/O panel for 2EB24 with
 2 fiber transmitters on SC

Fiber inputs:

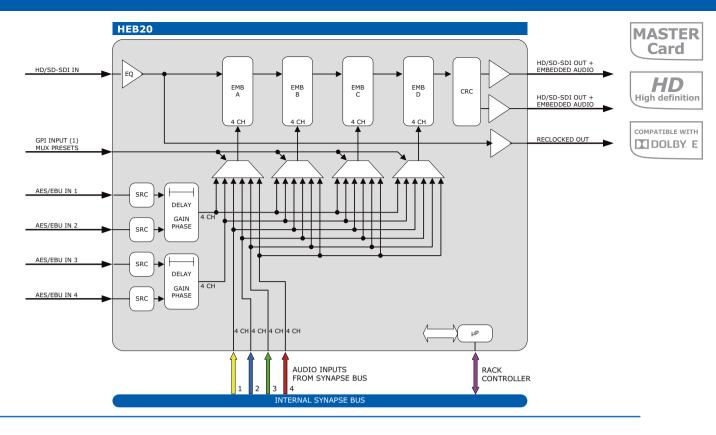
- BPL12R2_FC/PC_2EB24:
 I/O panel for 2EB24 with
 2 fiber receivers on FC/PC
- BPL12R2_SC_2EB24:
 I/O panel for 2EB24 with
 2 fiber receivers on SC

CVBS outputs:

 BPL12C2_2EB24:
 I/O panel for 2EB24 with 2 CVBS outputs

SDI OUTPUT A-1 EMBEDDED
SDI OUTPUT A-2 EMBEDDED (OPTIONAL FIBER OR CVBS OUTPUT)
SDI INPUT B (OPTIONAL FIBER INPUT)
SDI OUTPUT B-1 EMBEDDED
SDI OUTPUT B-2 EMBEDDED (OPTIONAL FIBER OR CVBS OUTPUT)
BALANCED ANALOG AUDIO INPUT

For fiber connectivity see www.axon.tv


SDI INPUT A (OPTIONAL FIBER INPUT)

Specifications

Serial video inputConnector26 pins female sub-DStandard625/50 or 525/59.94 SMPTEImpedance10 Ohmss nominal259M-C (270Mb/s) withCampling rate48KHzSMPTE 272M embedded audioSampling rate48KHzNumber ofSignal level0dB FS => 12dBu, 15dBu,nputs2 (1 per channel)Level controlEqualizationAutomatic to 300mLevel control@ 270Mb/s with Beldenrange+12dB to -60dB 0.25dB1694A or equivalent cableincrements> 15dB up to 270MHzFrequencyresponse< ±0.1dB, 20Hz to 20kHz
259M-C (270Mb/s) with (differential) SMPTE 272M embedded audio Sampling rate 48KHz Number of Signal level 0dB FS => 12dBu, 15dBu, nputs 2 (1 per channel) 18dBu or 24dBu Equalization Automatic to 300m Level control @ 270Mb/s with Belden range +12dB to -60dB 0.25dB 1694A or equivalent cable increments Return loss > 15dB up to 270MHz Frequency
SMPTE 272M embedded audio Sampling rate 48KHz Number of Signal level 0dB FS => 12dBu, 15dBu, nputs 2 (1 per channel) 18dBu or 24dBu Equalization Automatic to 300m Level control @ 270Mb/s with Belden range +12dB to -60dB 0.25dB 1694A or equivalent cable increments Return loss > 15dB up to 270MHz Frequency
Number of nputs Signal level 0dB FS => 12dBu, 15dBu, 18dBu or 24dBu Equalization Automatic to 300m Level control @ 270Mb/s with Belden range +12dB to -60dB 0.25dB 1694A or equivalent cable increments Return loss > 15dB up to 270MHz Frequency
nputs 2 (1 per channel) 18dBu or 24dBu Equalization Automatic to 300m Level control @ 270Mb/s with Belden range +12dB to -60dB 0.25dB 1694A or equivalent cable increments Return loss > 15dB up to 270MHz Frequency
Equalization Automatic to 300m Level control @ 270Mb/s with Belden range +12dB to -60dB 0.25dB 1694A or equivalent cable increments Return loss > 15dB up to 270MHz
 @ 270Mb/s with Belden range +12dB to -60dB 0.25dB increments increments increments increments increments increments increments increments increments increments increments increments increments increments increments
1694A or equivalent cable increments Return loss > 15dB up to 270MHz Frequency
Return loss > 15dB up to 270MHz Frequency
response < ±0.1dB, 20Hz to 20kHz
SD serial video output (broadcast quality)
Standard 625/50 or 525/59.94 SMPTE Dynamic range 100dB @-60 dBFS
259M-C (270Mb/s) with THD+N < 0.002% (>96dB) @ 1kHz,
SMPTE 272M embedded audio -1dB FS
Number of < 0.002% (> 96dB) @ 20Hz
butputs4 (2 per channel)to 20kHz, -1dB FS
Signal level 800mV nominal CMRR > 60dB at 1kHz
DC offset 0V ±0.5V
Rise/fall time 800ps nominal Miscellaneous
Overshoot< 10% of amplitude
Return loss> 15dB up to 270MHzOperating
temperature 0 °C to +50 °C
Analog audio input Dimensions 137 x 296 x 20 mm (HxWxD)
Type Balanced analog audio
Number of Electrical
nputs 4 per SDI input Voltage +24V to +30V
(8 in single channel mode) Power <12 Watts

BPL12

HEB20 Dual HD/SD preset based audio embedder

The HEB20 is an HD SDI and SD SDI digital audio embedder. It is capable of inserting or appending 4 free-running AES/EBU digital audio channels (8 channels). The core of the HEB20 consists of four embedder-blocks Emb_A, Emb_B and Emb_C and Emb_D. Each block is capable of embedding 4 audio channels into one group, which gives a total of 16 audio channels into four groups. In addition, four ADD-ON cards can be connected to create a routing matrix. One ADD-ON card is needed to get 16 embedded channels (DIO48). The architecture of Emb_A to Emb_D blocks is identical. The local inputs have the opportunity to do additional Phase and Gain corrections (on the fly). The HEB20 has two HD-SDI processed outputs and 4 local AES/EBU inputs.

- 4 AES/EBU inputs with sample rate converter (available with 110 Ohm and 75 Ohm inputs)
- 4 extra AES/EBU inputs through the Synapse bus
- 1 x reclocked HD SDI output
- 2 x HD SDI + embedded audio outputs
- 8 presets that configure all 16 input channels at once.
 One controlled by closing of BNC 5
- Audio level and phase control (local inputs only)
- Audio offset delay (local inputs only) up to 2600 ms
- 8 extra audio channels (2 groups) with ADD-ON card
- Peak detection 0, -6, -12 and -18dBFS
- Silence detection with threshold (-100 to -20dBFS) and time control (1 to 255 sec)
- Transparent for ATC time code RP188, RP196, RP215
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

EMBEDDING

audio for video

Applications

- HD/SD audio embedding
- Preset based 8 channel audio embedding
- Preset based 16 channel audio embedding with DIO48 ADD-ON card

Ordering information

Module:

HDB20: HD/SD preset based audio de-embedder

Standard I/O:

- BPH01_HEB20: I/O-panel for HEB20 with unbalanced AES/EBU in
- BPH02_HEB20: Rear connector for HEB20 with balanced AES/EBU in
- BPH02D_HEB20: I/O-panel for HEB20 with balanced AES/EBU in on sub-D

Fiber outputs:

- BPH01T_FC/PC_HEB20: I/O-panel HEB20 with fiber transmitter on FC/PC
- BPH01T_SC_HEB20: I/O-panel for HEB20 with fiber transmitter on SC
- BPH02T_FC/PC_HEB20: I/O-panel for HEB20 with fiber transmitter on FC/PC
- BPH02T_SC_HEB20: I/O-panel for HEB20 with fiber transmitter on SC
- BPH02DT_FC/PC_HEB20: I/O-panel for HEB20 with fiber transmitter on FC/PC
- BPH02DT_SC_HEB20: I/O-panel for HEB20 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HEB20: I/O-panel for HEB20 with fiber receiver on FC/PC
- BPH01R_SC_HEB20: I/Opanel for HEB20 with fiber receiver on SC
- BPH02R_FC/PC_HEB20: I/O-panel for HEB20 with fiber receiver on FC/PC
- BPH02R_SC_HEB20: I/Opanel for HEB20 with fiber receiver on SC
- BPH02DR_FC/PC_HEB20: I/O-panel for HEB20 with fiber receiver on FC/PC
- BPH02DR_SC_HEB20: I/O-panel for HEB20 with fiber receiver on SC

	•		
HD/SD SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc	\bigcirc
HD/SD SDI RECLOCKED OUTPUT	\bigcirc	\bigcirc	\bigcirc
HD/SD SDI PROCESSED OUTPUT 1	\bigcirc	\bigcirc	\bigcirc
HD/SD SDI PROC. OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	\bigcirc	\bigcirc
GPI (MUX PRESETS) INPUT	\bigcirc		\bigcirc
AES/EBU INPUT 1	\bigcirc		
AES/EBU INPUT 2	\bigcirc		
AES/EBU INPUT 3	\bigcirc		
AES/EBU INPUT 4	\bigcirc		8
	\bigcirc	₽	{
For fiber connectivity see www.axon.tv	BPH01	BPH02	BPH02D

For fiber connectivity see www.axon.tv

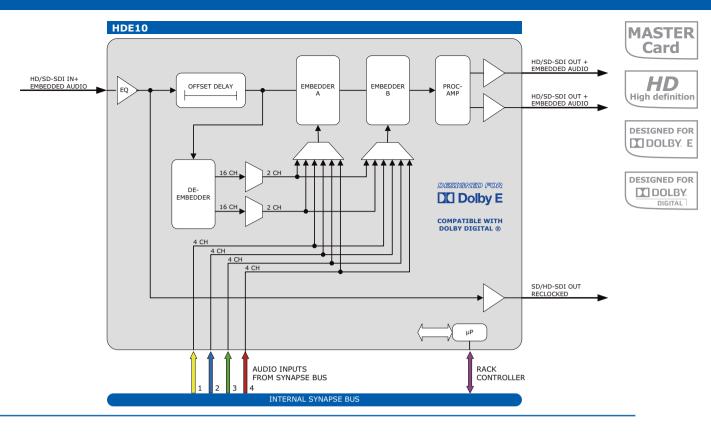
Specifications

HD/SD serial video input

nb, ob senar naco inpac				
Standard	625/50 or 525/59.94 SMPTE	Connector	BNC, Screw termir	
	259M-C (270Mb/s) with		pins female sub-D	
	SMPTE 272M embedded audio	Standard	AES-1992 for bala	
	SMPTE 292M (1.5Gb/s),		synchronous or asy	
	SMPTE 260M, SMPTE 274M,		PCM/AES, SMPTE	
	SMPTE 296M, SMPTE 349M		single ended synch	
	1080i/59.94, 1080i/50,		asynchronous PCM	
	720p/59.94, 720p/50	Number of		
Equalization	Automatic to 100m	inputs	4	
	@ 1.5Gb/s with Belden	Sampling rate	32 kHz to 96 kHz	
	1694A or equivalent cable.		nous via SRC and	
Return loss	> 15dB up to 1.5GHz		Synchronous in tra	

HD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
	SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,
	720p/59.94, 720p/50
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise and fall time	200ps nominal for HD,
	750ps nominal for SD
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
Wideband jitter	< 0.2UI


HEB20

AES audio input

Connector	BNC, Screw terminal or 25
	pins female sub-D (balanced)
Standard	AES-1992 for balanced
	synchronous or asynchronous
	PCM/AES, SMPTE 276M for
	single ended synchronous or
	asynchronous PCM/AES
Number of	
inputs	4
Sampling rate	32 kHz to 96 kHz A-Synchro-
	nous via SRC and 48 kHz
	Synchronous in transparent
	mode (Dolby E)
Resolution	24 bits in HD, 20 bits in SD
Minimum input/	
output delay	1 ms
Impedance	110 Ohms or 75 Ohms
Level	0.2V to 1V nom for BNC,
	2V to 7V for balanced operation

liscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)
Electrical	
Voltage	+24V to +30V
Power	<8 Watts

HDE10 HD/SD Dolby E/Dolby Digital embedder

The HDE10 is a master card especially designed to be used in combination with the Synapse Dolby E encoder the DBE08, and the Dolby Digital Encoder DDE51. The propagation delay of the HD/SD-SDI is adjustable to Dolby E or Dolby Digital encoders. The HDE10 has a dual (2 channel) de-embedder that can be used to re-insert program channel 1 and 2. On 3 and 4 the unit can embed Dolby-E or Dolby Digital. A second embedder block can embed a full extra group.

- Master card with embedding functionality designed for Dolby E and Dolby Digital
- PCM and Dolby E transparency
- Built-in de-embedder for re-insertion of existing embedded audio
- Up to 8 frame HD/SD propagation delay for use with Dolby Digital encoders
- Automatic Dolby E propagation delay compensation
- Compatible with 4 PCM/Dolby E streams
- Append and overwrite modes
- Any 4 channels out of all 16 embedded channels can be re-inserted into the SDI stream
- Built-in proc amp
- Transparent for ATC time code RP188, RP196, RP215
- Full control and status monitoring through the front panel of the SFR04/SFR08/18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Applications

- Dolby Digital embedding with correct lip-sync video propagation delay
- Dolby E embedding with correct lip-sync video propagation delay
- Embedding of external Dolby Digital + one stereo embedded pair into the same group, and 2 external AES pairs (requires a DDE51 and DIO24)

Ordering information

Module:

 HDE10: HD/SD Dolby
 E/Dolby Digital embedder (master card)

Standard I/O:

BPH01_HDE10: I/O panel for HDE10

Fiber outputs:

- BPH01T_FC/PC_HDE10:
 I/O panel for HDE10 with
 fiber transmitter on FC/PC
- BPH01T_SC_HDE10:
 I/O panel for HDE10 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HDE10:
 I/O panel for HDE10 with fiber receiver on FC/PC
- BPH01R_SC_HDE10:
 I/O panel for HDE10 with fiber receiver on SC

HD/SD-SDI RECLOCKED OUTPUT
HD SDI PROCESSED OUTPUT 1
HD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)

For fiber connectivity see www.axon.tv

HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)

Specifications

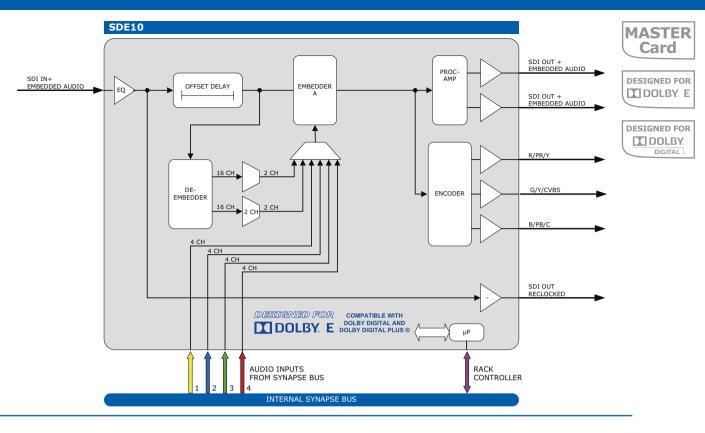
HD/SD seria	l video input	Signal I
Standard	625/50 or 525/59.94 SMPTE	DC offs
	259M-C (270Mb/s) with	Rise an
	SMPTE 272M embedded audio	fall time
	SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,	Oversh
	SMPTE 296M, SMPTE 349M	Return
	1080i/59.94, 1080i/50,	
	720p/59.94, 720p/50	Wideba
Equalization	Automatic to 100m	
	@ 1.5Gb/s with Belden	Miscel
	1694A or equivalent cable.	Weight
Return loss	> 15dB up to 1.5GHz	Operati
		temner

HD serial video output

Standard	

259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50

625/50 or 525/59.94 SMPTE


gnal level	800mV nominal
Coffset	0V ±0.5V
se and	
ll time	200ps nominal for HD, 750ps
	nominal for SD
vershoot	< 10% of amplitude
eturn loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
ideband jitter	< 0.2UI

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts

SDE10 SD Dolby E/Dolby Digital embedder

The SDE10 is a master card especially designed to be used in combination with the Synapse Dolby E encoder the DBE08 or the Dolby Digital encoder DDE51. The propagation delay of the SDI is adjustable to Dolby E or Dolby Digital encoders. The SDE10 has a dual (2 channel) de-embedder that can be used to re-insert program channel 1/2. On 3/4 the unit can embed Dolby-E or Dolby Digital.

- Master card with embedding functionality designed for Dolby E and Dolby Digital
- PCM and Dolby E transparency
- Built-in de-embedder for re-insertion of existing embedded audio
- Up to 24 frame SD propagation delay for use with Dolby Digital encoders
- Automatic Dolby E propagation delay compensation
- Compatible with 2 PCM/Dolby E streams
- Append and overwrite modes
- Any 4 channels out of all 16 embedded channels can be re-inserted into the SDI stream
- Analog component, RGB or CVBS+YC output
- Full control and status monitoring through the front panel of the SFR04/18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Complementary cards:

DBE08, DDE51, DIO24

EMBEDDING

audio for video

Applications

- Dolby Digital embedding with correct lip-sync video propagation delay
- Dolby E embedding with correct lip-sync video propagation delay
- Embedding of external Dolby Digital + one stereo embedded pair into the same group

Ordering information

Module:

 SDE10: SD Dolby E / Dolby Digital embedder

Standard I/O:

- BPL01_SDE10: I/O panel for SDE10
- BPX01_SDE10:
 I/O panel for SDE10 with relay bypass

Fiber outputs:

 BPL01T_FC/PC_SDE10:
 I/O panel for SDE10 with fiber transmitter on FC/PC

 BPL01T_SC_SDE10:
 I/O panel for SDE10 with fiber transmitter on SC

Fiber inputs:

 BPL01R_FC/PC_SDE10: I/O panel for SDE10 with fiber receiver on FC/PC

 BPL01R_SC_SDE10:
 I/O panel for SDE10 with fiber receiver on SC

	e	(
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	0
SDI RECLOCKED OUTPUT	\bigcirc	Ô
SDI PROCESSED OUTPUT 1	\bigcirc	\bigcirc
SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	0-
G/Y/CVBS OUTPUT	\bigcirc	Ô
B/PB/Y OUTPUT	\bigcirc	0
R/PR/C OUTPUT	\bigcirc	Ô
	\bigcirc	0
	\bigcirc	Ô
	e	€
For fiber connectivity see www.axon.tv	BPL01	BPX01

Specifications

outputs

Signal level

Rise/fall time

DC offset

Overshoot

Return loss

Jitter

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	
	150m with BPX01	
Return loss	> 20dB up to 270MHz	
SD serial vid	eo output	
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		

3 (2 processed and 1 reclocked)

800mV nominal

520ps nominal < 10% of amplitude

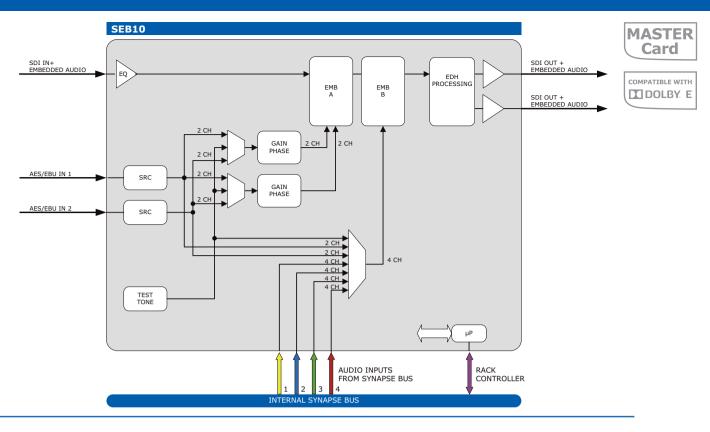
> 18dB up to 270MHz

< 600ps 10Hz HPF

0V ±0.5V

Analog video output

Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M), Component
	and RGB
Number of	
outputs	3
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB


Miscellaneou	S
Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °

Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts

elay bypas:

SEB10 SD-SDI 4 channel (2 AES/EBU) digital audio embedder

The SEB10 is a digital audio embedder with 2 local AES/EBU inputs and the possibility to add 4 extra channels through the Synapse ADD-ON bus. The inputs can have a sample rate of 32 to 96 kHz by using the built-in sample rate converter. For Dolby-E and other transparent applications the SRC can be by-passed. 4 AES/EBU inputs with sample rate converter (available with 110 Ohms and 75 Ohms inputs).

- group embedder (1 local 1 ADD-ON)
- Sample Rate Converter on AES/EBU input
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- 4 extra audio channels (1 groups) with optional ADC20, ADC24, ADL24, and DIO24
- AES/EBU inputs on 3pole screw terminal or sub-D (110-Ohms) or BNC (75 Ohms)
- Selectable test tone for all stereo inputs (including embedder B)
- EDH detection
- Full control and status monitoring through the front panel of the SFR04/SFR08/18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

 Generic AES/EBU embedding

Ordering information

Module:

 SEB10: SD-SDI 4 channel (2 AES/EBU) digital audio embedder

Standard I/O

- BPL02_SEB10: I/O panel for SEB10 with unbalanced AES/EBU in
- BPL03_SEB10: I/O panel for SEB10 with balanced AES/EBU in
- BPL03D_SEB10: I/O panel for SEB10 with balanced AES/EBU in on sub-D

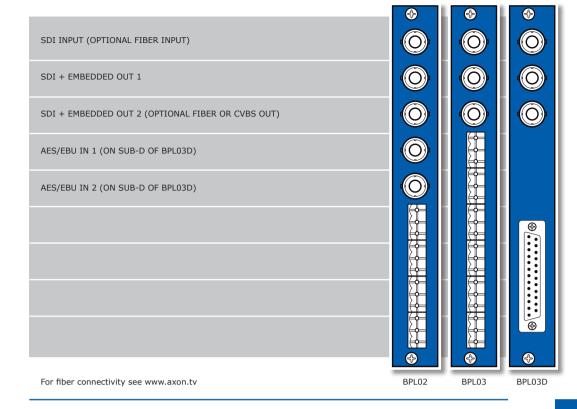
SEB10

EMBEDDING

Fiber outputs:

- BPL02T_FC/PC_SEB10: I/O panel for SEB10 with fiber transmitter on FC/PC
- BPL02T_SC_SEB10: I/O panel for SEB10 with fiber transmitter on SC
- BPL03T_FC/PC_SEB10: I/O panel for SEB10 with fiber transmitter on FC/PC
- BPL03T_SC_SEB10: I/O panel for SEB10 with fiber transmitter on SC
- BPL03DT_FC/PC_SEB10: I/O panel for SEB10 with fiber transmitter on FC/PC

BPL03DT_SC_SEB10: I/O panel for SEB10 with fiber transmitter on SC


Fiber inputs:

- BPL02R_FC/PC_SEB10: I/O panel for SEB10 with fiber receiver on FC/PC
- BPL02R_SC_SEB10: I/O panel for SEB10 with fiber receiver on SC
- BPL03R_FC/PC_SEB10: I/O panel for SEB10 with fiber receiver on FC/PC
- BPL03R_SC_SEB10: I/O panel for SEB10 with fiber receiver on SC
- BPL03DR_FC/PC_SEB10: I/O panel for SEB10 with fiber receiver on FC/PC
- BPL03DR_SC_SEB10: I/O panel for SEB10 with fiber receiver on SC

CVBS outputs:

- BPL02C SEB10: I/O panel for SEB10 with CVBS output
- BPL03C_SEB10: I/O panel for SEB10 with CVBS output

BPL03DC_SEB10: I/O panel for SEB10 with CVBS output

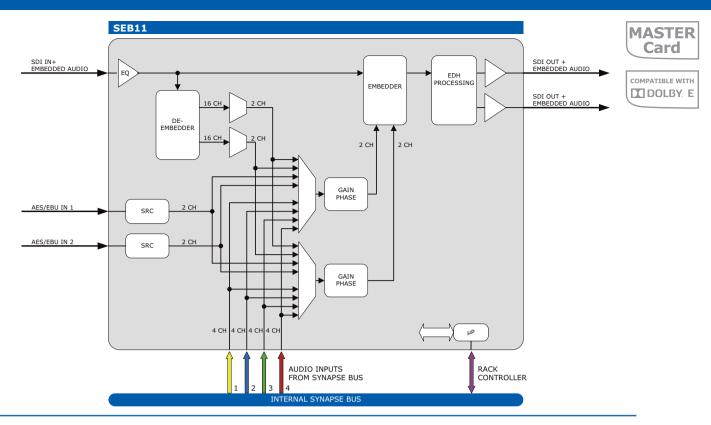
Specifications

Serial video input		AES input	
Standard	625/50 or 525/59.94 SMPTE	Connector	BNC, Screw terminal or
	259M-C (270Mb/s) with		Sub-D (balanced)
	SMPTE 272M embedded audio	Standard	AES-1992 for balanced syn-
Number of input	s 1		chronous or asynchronous
Equalization	Automatic to 300m @		PCM/AES, SMPTE 276M for
	270Mb/s with Belden 1694A		single ended synchronous or
	or equivalent cable		asynchronous PCM/AES
Return loss	> 15dB up to 270MHz	Number of input	s 2
		Sampling rate	32 kHz to 96 kHz asynchro-
SD serial video output			nous 48 kHz Synchronous
Standard	625/50 or 525/59.94 SMPTE		(SRC=off)
	259M-C (270Mb/s) with	Resolution	20 bits
	SMPTE 272M embedded audio	Minimum input,	/
Number of		output delay	2 ms
outputs	2	Number of input	s 2
Signal level	800mV nominal	Impedance	110 Ohms or 75 Ohms
DC offset	0V ±0.5V	Level	0.2V to 1V nom for BNC, 2V
Rise/fall time	800ps nominal		to 7V for balanced operation
Overshoot	< 10% of amplitude		
Return loss	> 15dB up to 270MHz	Miscellaneous	5
		Weight	Approx. 250g

C, 2V ration

Electrical

Operating


temperature Dimensions

Voltage	+24V to +30V
Power	<6 Watts

0 °C to +50 °C

137 x 296 x 20 mm (HxWxD)

SEB10

SEB11 SD-SDI 4 channel (2 AES/EBU) digital audio embedder with 4 channel de-embedder, re-insertion unit

The SEB11 is a digital audio embedder with the possibility to add a stereo pair to an existing audio group. This is possible through a built-in de-embedder which outputs can be selected in the input multiplexer of the main embedder. The inputs can have a sample rate of 32 to 96 kHz by using the built-in sample rate converter. For Dolby-E and other transparent applications the SRC can be by-passed.

- 4 Channel de-embedder with 1 group embedder
- Sample Rate Converter on AES/EBU input
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Swapping and combining of local AES/EBU with embedded and ADD-ON audio channels
- AES/EBU inputs on 3pole screw terminal or sub-D (110 Ohms) or BNC (75 Ohms)
- EDH detection and generation
- Full control and status monitoring through the front panel of the SFR04/18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

 Adding an AES/EBU channel to an existing group (by de-embedding the audio you want to keep)

Ordering information

- Module:
- SEB11: SD-SDI 4 channel (2 AES/EBU) digital audio embedder

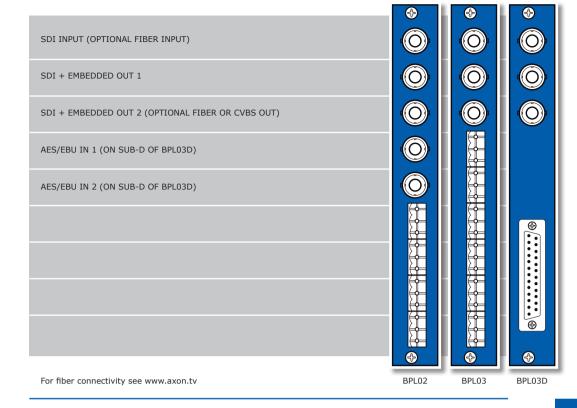
Standard I/O

- BPL02_SEB11: I/O panel for SEB11 with unbalanced AES/EBU in
- BPL03_SEB11: I/O panel for SEB11 with balanced AES/EBU in
- BPL03D_SEB11: I/O panel for SEB11 with balanced AES/EBU in on sub-D

EMBEDDING

Fiber outputs:

- BPL02T_FC/PC_SEB11: I/O panel for SEB11 with fiber transmitter on FC/PC
- BPL02T_SC_SEB11: I/O panel for SEB11 with fiber transmitter on SC
- BPL03T_FC/PC_SEB11: I/O panel for SEB11 with fiber transmitter on FC/PC
- BPL03T_SC_SEB11: I/O panel for SEB11 with fiber transmitter on SC
- BPL03DT_FC/PC_SEB11: I/O panel for SEB11 with fiber transmitter on FC/PC


BPL03DT_SC_SEB11: I/O panel for SEB11 with fiber transmitter on SC

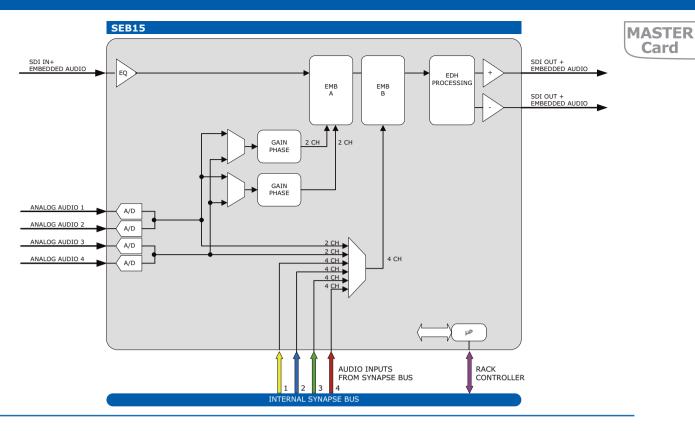
Fiber inputs:

- BPL02R_FC/PC_SEB11: I/O panel for SEB11 with fiber receiver on FC/PC
- BPL02R_SC_SEB11: I/O panel for SEB11 with fiber receiver on SC
- BPL03R_FC/PC_SEB11: I/O panel for SEB11 with fiber receiver on FC/PC
- BPL03R_SC_SEB11: I/O panel for SEB11 with fiber receiver on SC
- BPL03DR_FC/PC_SEB11: I/O panel for SEB11 with fiber receiver on FC/PC
- BPL03DR_SC_SEB11: I/O panel for SEB11 with fiber receiver on SC

CVBS outputs:

- BPL02C SEB11: I/O panel for SEB11 with CVBS output
- BPL03C_SEB11: I/O panel for SEB11 with CVBS output
- BPL03DC_SEB11: I/O panel for SEB11 with CVBS output

Specifications


Serial video in	put	AES input	
Standard	625/50 or 525/59.94 SMPTE	Connector	BNC, Screw terminal or
	259M-C (270Mb/s) with		sub-D (balanced)
	SMPTE 272M embedded audio	Standard	AES-1992 for balanced
Number of inputs	; 1		synchronous or asynchro-
Equalization	Automatic to 300m @		nous PCM/AES, SMPTE 276M
	270Mb/s with Belden 1694A		for single ended synchronous
	or equivalent cable		or asynchronous PCM/AES
Return loss	> 15dB up to 270MHz	Number of inputs	; 2
		Sampling rate	kHz to 96 kHz asynchro-
SD serial vide	o output		nous 48 kHz Synchronous
Standard	625/50 or 525/59.94 SMPTE		(SRC=off)
	259M-C (270Mb/s) with	Resolution	20 bits
	SMPTE 272M embedded audio	Minimum input/	
Number of		output delay	2 ms
outputs	2	Number of inputs	; 2
Signal level	800mV nominal	Impedance	110 Ohms or 75 Ohms
DC offset	0V ±0.5V	Level	0.2V to 1V nom for BNC, 2V
Rise/fall time	800ps nominal		to 7V for balanced operation
Overshoot	< 10% of amplitude		
Return loss	> 15dB up to 270MHz	Miscellaneous	
		Weight	Approx. 250g

temperature 0 °C to +50 °C Dimensions 137 x 296 x 20 mm (HxLxD)

Electrical

Operating

Voltage	+24V to +30V
Power	<6 Watts

SEB15 SD-SDI 4 channel analog audio embedder

The SEB15 is an analog audio embedder with 4 local inputs and the possibility to add 4 extra channels through the Synapse ADD-ON buss. A reference level audio adjustment for the analog audio inputs is provided to optimize the signal to noise ratio for different 0dBFS levels.

- 2 group embedder (1 local 1 ADD-ON)
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Selectable +12, +15, +18 and +24 dBu for 0dBFS
- 4 extra audio channels (1 groups) with optional ADC20, ADC24, ADL24, DBE08 and DIO24
- Analog audio inputs on 3 pole screw terminals or sub-D
- EDH detection and generation
- Full control and status monitoring through the front panel of the SFR04/18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

EMBEDDING

audio for video

 Generic analog audio embedding

Ordering information

Module:

SEB15: SD-SDI 4 channel analog audio embedder

Standard I/O:

- BPL02_SEB15: I/O panel for SEB15 with balanced analog audio in
- BPL02D_SEB15: I/O panel for SEB15 with balanced analog audio in on sub-D

Fiber inputs:

- BPL02T_FC/PC_SEB15: I/O panel for SEB15 with fiber transmitter on FC/PC
- BPL02T_SC_SEB15: I/O panel for SEB15 with fiber transmitter on SC
- BPL02DT_FC/PC_SEB15: I/O panel for SEB15 with fiber transmitter on FC/PC
- BPL02DT SC SEB15: I/O panel for SEB15 with fiber transmitter on SC

Fiber outputs:

BPL02R_FC/PC_SEB15: I/O panel for SEB15 with fiber receiver on FC/PC

BPL02R_SC_SEB15: I/O panel for SEB15 with fiber receiver on SC

BPL02DR_FC/PC_SEB15: I/O panel for SEB15 with fiber receiver on FC/PC

BPL02DR_SC_SEB15: I/O panel for SEB15 with fiber receiver on SC

CVBS outputs:

- BPL02C_SEB15: I/O panel for SEB15 with CVBS output
- BPL02DC_SEB15: I/O panel for SEB15 with CVBS output

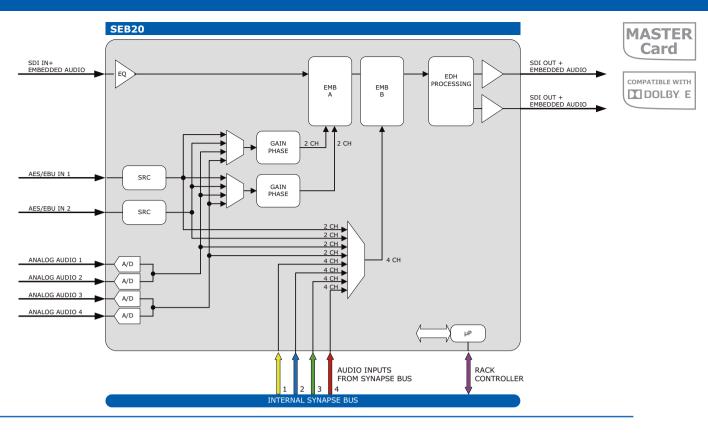
SDI INPUT (OPTIONAL FIBER INPUT)	
SDI + EMBEDDED OUT 1	
SDI + EMBEDDED OUT 2 (OPTIONAL FIBER OR CVBS OUT)	
\odot	
ANALOG AUDIO INPUT 1	•
ANALOG AUDIO INPUT 2	
ANALOG AUDIO INPUT 3	
ANALOG AUDIO INPUT 4	
For fiber connectivity see www.axon.tv BPL02 BPL	

Specifications

Serial video input		Signal level	0dBFS => 12dBu, 15dBu,
Standard	625/50 or 525/59.94 SMPTE		18dBu or 24dBu
	259M-C (270Mb/s) with	Level control	
	SMPTE 272M embedded audio	range	+12dB to -60dB 0.25dB
Number of input	s 1		increments
Equalization	Automatic to 300m @	Frequency	
	270Mb/s with Belden 1694A	response	< ±0.1dB, 20Hz to 20kHz
	or equivalent cable		(broadcast quality)
Return loss	> 15dB up to 270MHz	Dynamic range	100dB @-60 dBFS
		THD+N	< 0.002% (>96dB) @ 1kHz,
SD serial video output			-1dB FS
Standard	625/50 or 525/59.94 SMPTE		< 0.004% (> 96dB) @ 20Hz
	259M-C (270Mb/s) with		to 20kHz, -1dB FS
	SMPTE 272M embedded audio	CMRR	> 60dB at 1kHz
Number of			
outputs	2	Miscellaneous	1
Signal level	800mV nominal	Weight	Approx. 250g
DC offset	0V ±0.5V	Operating	
Rise/fall time	800ps nominal	temperature	0 °C to +50 °C
Overshoot	< 10% of amplitude	Dimensions	137 x 296 x 20 mm (HxWxD)
Return loss	> 15dB up to 270MHz		
		Electrical	
Analog audio	innut	Voltago	$+24V/t_{0}+20V/$

Analog audio input

Туре	Balanced analog audio	
Number of inputs	4	
Connector	Removable terminal strip or	
	sub-D	
Impedance	10k Ohms nominal (differential)	
Sampling rate	48KHz	


		,	•
		2	l
		1	l
		J	2
	I	H	1
		U	,
			1

ഗ
Π
- <u>1</u>
UT

•	
20kHz, -1dB FS	
60dB at 1kHz	
pprox. 250g	

5	1.1
rating	
perature	0 °C to +50 °C
ensions	137 x 296 x 20 mm (HxWxD)

Valhana	1241/ ha 1201/
Voltage	+24V to +30V
Power	<7 Watts

SEB20 SD-SDI 4 channel analog audio and digital audio embedder

The SEB20 is an analog and digital audio embedder with 4 local analog audio and 2 local digital audio inputs. The card has the possibility to add 4 extra channels through the Synapse ADD-ON buss. A reference level audio adjustment for the analog audio inputs and an SRC for the digital audio inputs are provided. For Dolby-E and other transparent applications the SRC can be by-passed.

- 2 group embedder (1 local 1 ADD-ON)
- Sample Rate Converter on AES/EBU input
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Selectable +12, +15, +18 and +24 dBu for 0dBFS for the analog audio inputs.
- 4 extra audio channels (1 groups) with optional ADC20, ADC24, ADL24, DBE08 and DIO24
- Analog audio inputs on 3 pole screw terminals or sub-D
- EDH detection and generation
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

 Generic analog and/or digital audio embedding

Ordering information

Module:

 SEB20: SD-SDI 4 channel analog Audio and digital Audio embedder

Standard I/O:

- BPL02_SEB20: I/O panel for SEB20 with unbalanced AES/EBU in and balanced analog audio in
- BPL02D_SEB20:
 I/O panel for SEB20 with unbalanced AES/EBU in and balanced analog audio in on D-sub
- BPL03_SEB20: I/O panel for SEB20 with balanced AES/EBU in and balanced analog audio in
- BPL03D_SEB20: I/O panel for SEB20 with balanced AES/EBU in and balanced analog audio in on sub-D

Fiber outputs:

- BPL02T_FC/PC_SEB20: I/O panel for SEB20 with fiber transmitter on FC/PC
- BPL02T_SC_SEB20: I/O panel for SEB20 with fiber transmitter on SC
- BPL02DT_FC/PC_ SEB20: I/O panel for SEB20 with fiber transmitter on FC/PC
- BPL02DT_SC_SEB20: I/O panel for SEB20 with fiber transmitter on SC
- BPL03T_FC/PC_SEB20:
 I/O panel for SEB20 with fiber transmitter on FC/PC
- BPL03T_SC_SEB20: I/O panel for SEB20 with fiber transmitter on SC
- BPL03DT_FC/PC_ SEB20: I/O panel for SEB20 with fiber transmitter on FC/PC
- BPL03DT_SC_SEB20: I/O panel for SEB20 with fiber transmitter on SC

EMBEDDING

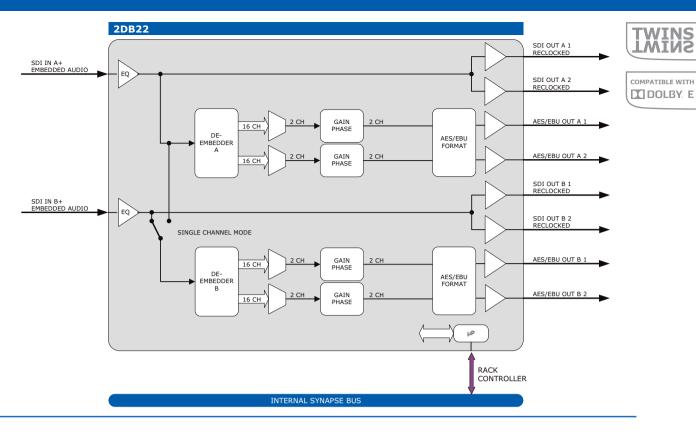
audio for video

Fiber inputs:

- BPL02R_FC/PC_SEB20: I/O panel for SEB20 with fiber receiver on FC/PC
- BPL02R_SC_SEB20: I/O panel for SEB20 with fiber receiver on SC
- BPL02DR_FC/PC_SEB20: I/O panel for SEB20 with fiber receiver on FC/PC
- BPL02DR_SC_SEB20: I/O panel for SEB20 with fiber receiver on SC
- BPL03R_FC/PC_SEB20: I/O panel for SEB20 with fiber receiver on FC/PC
- BPL03R_SC_SEB20: I/O panel for SEB20 with fiber receiver on SC
- BPL03DR_FC/PC_SEB20: I/O panel for SEB20 with fiber receiver on FC/PC
- BPL03DR_SC_SEB20: I/O panel for SEB20 with fiber receiver on SC

CVBS outputs:

- BPL02C_SEB20: I/O panel for SEB20 with CVBS output
- BPL02DC_SEB20: I/O panel for SEB20 with CVBS output
- BPL03C_SEB20: I/O panel for SEB20 with CVBS output
- BPL03DC_SEB20: I/O panel for SEB20 with CVBS output


	⊕	€	€	Ð
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SDI + EMBEDDED OUT 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SDI + EMB OUT 2 (OPTIONAL FIBER OR CVBS OUT)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
AES/EBU INPUT 1 (WITH BPL03D ON D-SUB)	\bigcirc	\bigcirc		
AES/EBU INPUT 2 (WITH BPL03D ON D-SUB)	\bigcirc	\bigcirc		
ANALOG AUDIO INPUT 1				
ANALOG AUDIO INPUT 2				
ANALOG AUDIO INPUT 3				
ANALOG AUDIO INPUT 4		⊗ ⊕		●
For fiber connectivity see www.axon.tv	BPL02	BPL02D	BPL03	BPL03D
	2. 202	2. 2020	2.205	2. 2050

Specifications

Coriol video in		Dumonulo nomen	
Serial video input Standard 625/50 or 525/59.94 SMPTE		Dynamic range THD+N	100dB @-60 dBFS < 0.002% (>96dB) @ 1kHz,
Stanuaru	259M-C (270Mb/s) with	ΙΠΟΤΝ	-1dB FS
	SMPTE 272M embedded audio		< 0.004% (> 96dB) @ 20Hz
Number of inputs			to 20kHz, -1dB FS
Equalization	Automatic to 300m @	CMRR	> 60dB at 1kHz
Equalization	· · · · · · · · · · · · · · · · · · ·	CMKK	> OUUD at IKHZ
	270Mb/s with Belden 1694A	AEC innut	
Return loss	or equivalent cable	AES input Connector	DNC Carery terminal an
Return loss	> 15dB up to 270MHz	Connector	BNC, Screw terminal or
			sub-D (balanced)
SD serial vide	•	Standard	AES-1992 for balanced
Standard	625/50 or 525/59.94 SMPTE		synchronous or asynchro-
	259M-C (270Mb/s) with		nous PCM/AES, SMPTE 276M
	SMPTE 272M embedded audio		for single ended synchronous
Number of	_		or asynchronous PCM/AES
outputs	2	Number of inputs	
Signal level	800mV nominal	Sampling rate	32 kHz to 96 kHz asynchro-
DC offset	0V ±0.5V		nous 48 kHz Synchronous
Rise/fall time	800ps nominal		(SRC=off)
Overshoot	< 10% of amplitude	Resolution	20 bits
Return loss	> 15dB up to 270MHz	Minimum input/	
		output delay	2 ms
Analog audio	•	Number of inputs	
Туре	Balanced analog audio	Impedance	110 Ohms or 75 Ohms
Number of inputs	5 4	Level	0.2V to 1V nom for BNC, 2V
Connector	Removable terminal strip or		to 7V for balanced operation
	sub-D		
Impedance	10k Ohms nominal (differential)	Miscellaneous	
Sampling rate	48KHz	Weight	Aprox. 250g
Signal level	0dBFS => 12dBu, 15dBu,	Operating	
	18dBu or 24dBu	temperature	0 °C to +50 °C
Level control		Dimensions	137 x 296 x 20 mm (HxWxD)
range	+12dB to -60dB 0.25dB		
	increments	Electrical	
Frequency	$< \pm 0.1$ dB, 20Hz to 20kHz	Voltage	+24V to +30V
response	(broadcast quality)	Power	<7 Watts

85

2DB22 Dual 4 channel digital audio de-embedder

The 2DB22 contains two fully independent digital audio de-embedders. This card allows for 36 de-embedders in 4 Rack Units, and has its counterpart in the mirror image 2EB22.

- 2 x 2 AES/EBU outputs
- 110 Ohms balanced digital audio outputs on sub-D
- 2 x 2 reclocked SDI output
- Single channel mode for de-embedding (2 group de-embedder)
- 4 x AES/EBU out of a single SDI
- Audio level control for each individual channel
- -60 to +12dB
- Phase Control per output channel
- 0 or 180 deg
- Free selection of all embedded channels (any out of 16)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel

DE-EMBEDDING

audio for video

3

 \mathbf{O}

 \bigcirc

 \bigcirc

0

 \bigcirc

O

Applications

- Generic multi channel digital audio de-embedding
- 2 group (4 AES/EBU) de-embedding
- High density applications as in OB-Trucks

Ordering information

Module:

 2DB22: Dual 4 channel digital audio de-embedder

Standard I/O:

BPL12_2DB22: I/O panel for 2DB22

Fiber outputs:

- BPL12T2_FC/
 PC_2DB22: I/O panel for 2DB22 with 2 fiber transmitter on FC/PC
- BPL12T2_SC_2DB22: I/O panel for 2DB22 with 2 fiber transmitter on SC

Fiber inputs:

- BPL12R2_FC/PC_2DB22:
 I/O panel for 2DB22 with
 2 fiber receivers on FC/PC
- BPL12R2_SC_2DB22:
 I/O panel for 2DB22 with
 2 fiber receivers on SC

CVBS outputs:

BPL12C2_2DB22:
 I/O panel for 2DB22 with
 2 CVBS outputs

SDI OUTPUT A-2 RECLOCKED (OPTIONAL FIBER OR CVBS OUTPUT)
SDI INPUT B (OPTIONAL FIBER INPUT)
SDI OUTPUT B-1 RECLOCKED
SDI OUTPUT B-2 RECLOCKED (OPTIONAL FIBER OR CVBS OUTPUT)
BALANCED DIGITAL AUDIO OUTPUT

For fiber connectivity see www.axon.tv

SDI INPUT A (OPTIONAL FIBER INPUT)

SDI OUTPUT A-1 RECLOCKED

Specifications

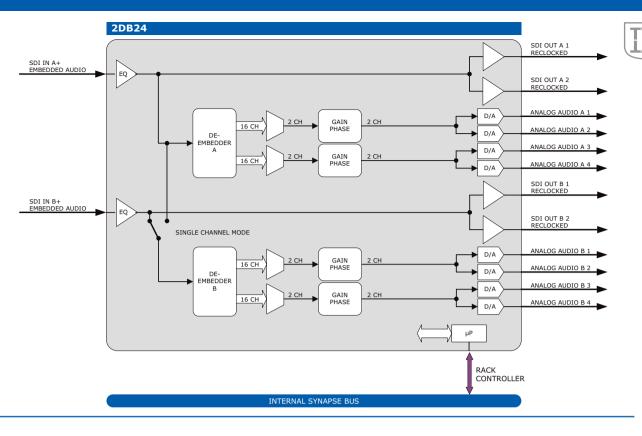
Serial video inputStandard625/50 or 525/59.94 SMPTE259M-C (270Mb/s) with
SMPTE 272M embedded audioNumber ofinputs2 (1 per channel)EqualizationAutomatic to 300m
@ 270Mb/s with Belden
1694A or equivalent cableReturn loss> 15dB up to 270MHz

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	4 (2 per channel)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

AES output Number of outputs 2 per channel (4 in single channel mode) Connector 26 pins female sub-D (balanced) Signal level 2.5V nominal Impedance 110 Ohms

Miscellaneous


Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<5 Watts

BPL12

2DB24 Dual 4 channel analog audio de-embedder

The 2DB24 contains two fully independent analog audio de-embedders. This card allows for 36 de-embeders in 4 Rack Units, and has its counterpart in the mirror image 2EB24.

- 2 x 4 analog outputs
- 2 x 2 reclocked SDI outputs
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- +24 dBu, +18 dBu, + 15 dBu and +12 dBu analog output levels at 0 dBFS
- EDH detection and generation
- Single channel mode for de-embedding (2 group de-embedding)
- 8 analog channels out of a single SDI signal
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel

4

 \mathbf{O}

 \bigcirc

 \bigcirc

0

 \bigcirc

O

BPL12

Applications

- Generic multi channel analog audio de-embedding
- 2 group (8 x analog audio) de-embedding
- High density applications as in OB-Trucks

Ordering information Module:

Module:

 2DB24: Dual 4 channel digital audio de-embedder

Standard I/O:

BPL12_2DB24: I/O panel for 2DB24

Fiber outputs:

- BPL12T2_FC/PC_2DB24:
 I/O panel for 2DB24 with
 2 fiber transmitter on FC/PC
- BPL12T2_SC_2DB24:
 I/O panel for 2DB24 with
 2 fiber transmitter on SC

Fiber inputs:

- BPL12R2_FC/PC_2DB24:
 I/O panel for 2DB24 with
 2 fiber receivers on FC/PC
- BPL12R2_SC_2DB24:
 I/O panel for 2DB24 with
 2 fiber receivers on SC

CVBS outputs:

BPL12C2_2DB24:
 I/O panel for 2DB24 with
 2 CVBS outputs

SDI OUTPUT A-1 RECLOCKED
SDI OUTPUT A-2 RECLOCKED (OPTIONAL FIBER OR CVBS OUTPUT)
SDI INPUT B (OPTIONAL FIBER INPUT)
SDI OUTPUT B-1 RECLOCKED
SDI OUTPUT B-2 RECLOCKED (OPTIONAL FIBER OR CVBS OUTPUT)
BALANCED ANALOG AUDIO OUTPUT

For fiber connectivity see www.axon.tv

SDI INPUT A (OPTIONAL FIBER INPUT)

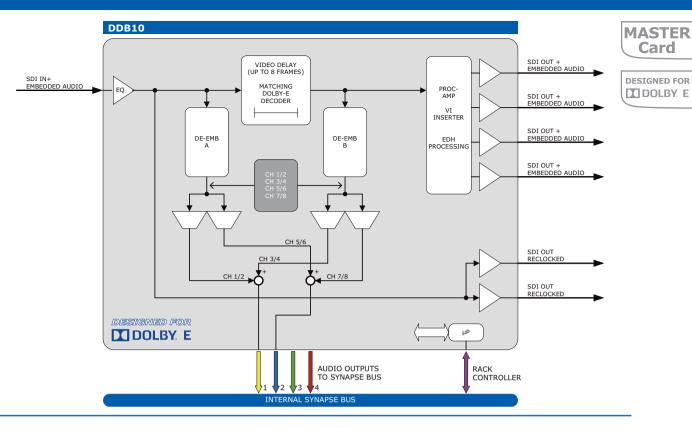
Specifications

Serial video inputStandard625/50 or 525/59.94 SMPTE259M-C (270Mb/s) with
SMPTE 272M embedded audioNumber ofinputs2 (1 per channel)EqualizationAutomatic to 300m
@ 270Mb/s with Belden
1694A or equivalent cableReturn loss> 15dB up to 270MHz

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	4 (2 per channel)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

Analog audio output


······································		
Туре	Balanced analog audio	
Number of		
outputs	4 per channel (8 in single	
	channel mode)	
Connector	26 pins female sub-D	
Impedance	50 Ohms balanced	
Signal level	0dBFS => 12dBu, 15dBu,	
	18dBu or 24dBu	
Frequency		
response	$<\pm0.05$ dB (20Hz to 20kHz)	
Gain mismatch	< 0.25 dB @997Hz, -20dBFS	
	Multi channel	
THD+N	< 92dB @ 1kHz, -1dBFS	
Crosstalk	< -100dB (20Hz to 20kHz)	
DC offset	< ±30mV	
Dynamic range	> 97dB @-60dBFS	

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<12 Watts

DDB10 SD Dolby E de-embedder

The DDB10 is a master card especially designed to be used in combination with the Synapse Dolby E decoder the DBD08. The propagation delay of the SDI is matched to the Dolby E decoder card to 1 frame. The nice touch to this card is that there is a full de-embedder block before and after the delay. This ensures a matched audio delay for Dolby E and PCM that both can be sent to the ADD-ON bus. The unit has fixed dual channel selection criteria so that the Dolby E stream can not be taken apart and corrupted.

- De-embedder master card designed for Dolby E
- Unique PCM and Dolby E transparency
- Automatic Dolby E propagation delay compensation
- Compatible with 2 PCM and 2 Dolby E streams
- VLI insertion
- EDH detection and processing
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Complementary card to:

DBD08

()

Ô

Ô

 $\hat{\hat{Q}}$

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ô

Ô

BPX01

BPL01

elay bypass

()

Applications

 Dolby E de-embedding with PCM and Dolby E latency compensation

Ordering information

Master:

 2DB24: Dual 4 channel digital audio de-embedder

Standard I/O:

 DDB10: SD Dolby E de-embedder (master card)

Standard I/O:

- BPL01_DDB10:
 I/O panel for DDB10
- BPX01_DDB10:
 I/O panel for DDB10 with relay bypass

Fiber outputs:

 BPL01T_FC/PC_DDB10:
 I/O panel for DDB10 with fiber transmitter on FC/PC

 BPL01T_SC_DDB10:
 I/O panel for DDB10 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_DDB10:
 I/O panel for DDB10 with fiber receiver on FC/PC
- BPL01R_SC_DDB10:
 I/O panel for DDB10 with fiber receiver on SC

CVBS output:

BPL01C_DDB10:

I/O panel for DDB10 with CVBS output

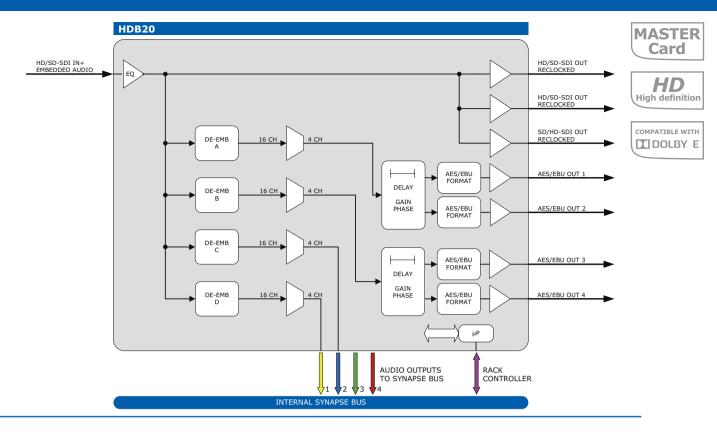
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	
SDI RECLOCKED OUTPUT 1	\bigcirc	1
SDI RECLOCKED OUTPUT 2	\bigcirc	
SDI PROCESSED OUTPUT 1 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	
SDI PROCESSED OUTPUT 2	\bigcirc	1
SDI PROCESSED OUTPUT 3	\bigcirc	1
SDI PROCESSED OUTPUT 4	\bigcirc	
	\bigcirc	
	0	
	€	i _

For fiber connectivity see www.axon.tv

Specifications

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	
Return loss	> 15dB up to 270MHz	

SD serial video output


Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
outputs	2 reclocked 4 processed	
Signal level	800mV nominal	
DC offset	0V ±0.5V	
Rise/fall time	800ps nominal	
Overshoot	< 10% of amplitude	
Return loss	> 15dB up to 270MHz	

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<7 Watts

HDB20 HD/SD preset based audio de-embedder

The HDB20 is an HD SDI and SD SDI digital audio de-embedder. It is an audio extractor that outputs four AES/EBU streams on the board itself and four ADD-ON audio signals via the local bus to two ADD-ON cards. All chosen settings are stored in presets, these presets (8) can be restored via automation to fire up a salvo with 16 independent audio channels in any combination (even duplicates).

- 16 channel (4 group) de-embedder
- 4 local AES/EBU outputs
- 8 extra outputs through ADD-ON cards
- 3 x reclocked HD SDI output
- 8 presets that configure all 16 output channels at once.
- Audio level and phase control (local outputs only)
- Audio offset delay (local outputs only) up to 2600 ms
- Free selection of all embedded channels
- Peak detection 0, -6, -12 and -18dBFS
- Silence detection with threshold (-100 to -20dBFS) and time control (1 to 255 sec)
- Audio format detection (e.g. AC3, Dolby E and PCM)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

DE-EMBEDDING

Applications

- HD and SD preset based 8 channel de-embedding
- HD and SD preset based 16 channel de-embedding with DIO48

Ordering information Module:

HDB20: HD/ SD preset based audio de-embedder

Standard I/O:

BPH01_HDB20: I/O panel for HDB20 with unbalanced AES/EBU out

BPH02_HDB20: I/O for HDB20 with balanced AES/EBU out

BPH02D HDB20: I/O panel for HDB20 with balanced AES/EBU out on sub-D

Fiber outputs:

- BPH01T FC/PC HDB20: I/O panel HDB20 with fiber transmitter on FC/PC
- BPH01T_SC_HDB20: I/O panel for HDB20 with fiber transmitter on SC
- BPH02T_FC/PC_HDB20: I/O panel for HDB20 with fiber transmitter on FC/PC
- BPH02T_SC_HDB20: I/O panel for HDB20 with fiber transmitter on SC
- BPH02DT_FC/PC_HDB20: I/O panel for HDB20 with fiber transmitter on FC/PC

BPH02DT SC HDB20: I/O panel for HDB20 with fiber transmitter on SC

Fiber inputs:

BPH01R_FC/PC_HDB20: I/O panel for HDB20 with fiber receiver on FC/PC

BPH01R_SC_HDB20: I/O panel for HDB20 with fiber receiver on SC

- BPH02R_FC/PC_HDB20: I/O panel for HDB20 with fiber receiver on FC/PC
- BPH02R_SC_HDB20: I/O panel for HDB20 with fiber receiver on SC
- BPH02DR FC/PC HDB20: I/O panel for HDB20 with fiber receiver on FC/PC
- BPH02DR_SC_HDB20: I/O panel for HDB20 with fiber receiver on SC

	€	€	e
HD/SD SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc	\bigcirc
HD/SD SDI RECLOCKED OUTPUT	\bigcirc	\bigcirc	\bigcirc
HD/SD SDI PROCESSED OUTPUT 1	\bigcirc	\bigcirc	\bigcirc
HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	\bigcirc	\bigcirc
AES/EBU OUTPUT 1	\bigcirc		 ●●
AES/EBU OUTPUT 2	\bigcirc		
AES/EBU OUTPUT 3	\bigcirc		
AES/EBU OUTPUT 4	\bigcirc		\$
	€ €	€	{
For fiber connectivity see www.axon.tv	BPH01	BPH02	BPH02D

Specifications

HD/SD Seria	l video input	Overshoot	< 10% of amplitude
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 15dB up to 1.0Gb/s, >
	259M-C (270Mb/s) with		10dB up to 1.5Gb/s
	SMPTE 272M embedded audio	Wideband jitter	< 0.2UI
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	AES audio out	put
	SMPTE 296M, SMPTE 349M	Number of	
	1080i/59.94, 1080i/50,	outputs	4
	720p/59.94, 720p/50,	Connector	BNC, Screw terminal or
	1080p/24, 1080p/23.98		25 pins female sub-D
Equalization	Automatic to 100m		(balanced)
	@ 1.5Gb/s with Belden	Resolution	24 bits
	1694A or equivalent cable.	Sampling rate	48KHz synchronous
Return loss	> 15dB up to 1.5GHz	Minimum	
		Input/output	
HD serial vid	eo output	delay	1.5ms
Standard	625/50 or 525/59.94 SMPTE	Maximum	
	259M-C (270Mb/s) with	Input/output	
	SMPTE 272M embedded audio	delay	5400 ms
	SMPTE 292M (1.5Gb/s),		

SMPTE 260M, SMPTE 274M,

SMPTE 296M, SMPTE 349M

1080i/59.94, 1080i/50,

720p/59.94, 720p/50,

800mV nominal

nominal for SD

0V ±0.5V

Signal level

DC offset

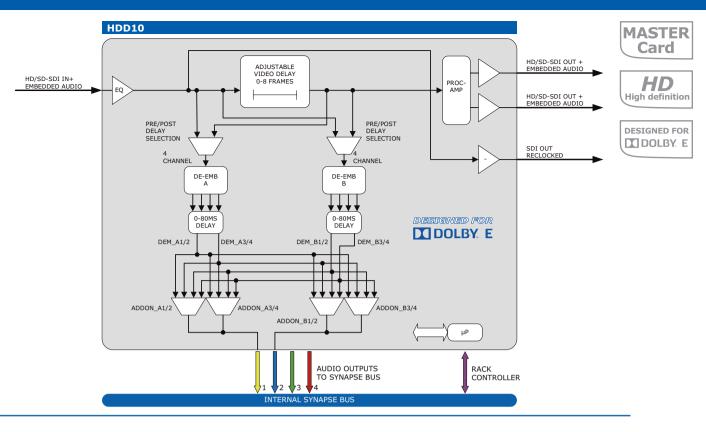
Rise and

fall time

1080p/24, 1080p/23.98

200ps nominal for HD, 750ps

Miscellaneous


Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<7 Watts

audio for video

HDD10 HD/SD Dolby E de-embedder (master card)

The HDD10 is a HD master card especially designed to be used in combination with the Synapse Dolby E decoder DBD08. The propagation delay of the HD/SD-SDI is matched to the Dolby E decoder card to 1 Frame. The nice touch to this card is that there are 2 assignable de-embedder blocks switchable before or after the transparent video delay. This ensures a matched audio delay for Dolby E and PCM that both can be send to the ADD-ON bus. The unit has fixed dual channel selection criteria so that the Dolby E stream can not be taken apart and corrupted.

- HD de-embedder master card designed for Dolby E
- Unique PCM and Dolby E transparency
- Automatic Dolby E propagation delay compensation
- Compatible with 4 PCM or Dolby E streams or any combination of 4 stereo streams.
- Delay status measurement
- Variable transparent video delay up to 8 frames in pixel increments
- Video proc amp
- Individual audio delay offset up to 85 ms per channel (8 total)
- Transparent for ATC time code RP188, RP196, RP215
- Full control and status monitoring through the front panel of the SFR04/SFR08/18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Complementary cards:

DBD08

DE-EMBEDDING

audio for video

Applications

- Dolby E de-embedder
- Lip-sync de-embedding of up to 4 Dolby E streams

Ordering information

Module:

■ HDD10: HD/SD Dolby E de-embedder (master card)

Standard I/O:

```
BPH01_HDD10:
  I/O panel for HDD10
```

Fiber outputs:

- BPH01T_FC/PC_HDD10: I/O panel for HDD10 with fiber transmitter on FC/PC
- BPH01T_SC_HDD10: I/O panel for HDD10 with fiber transmitter on SC

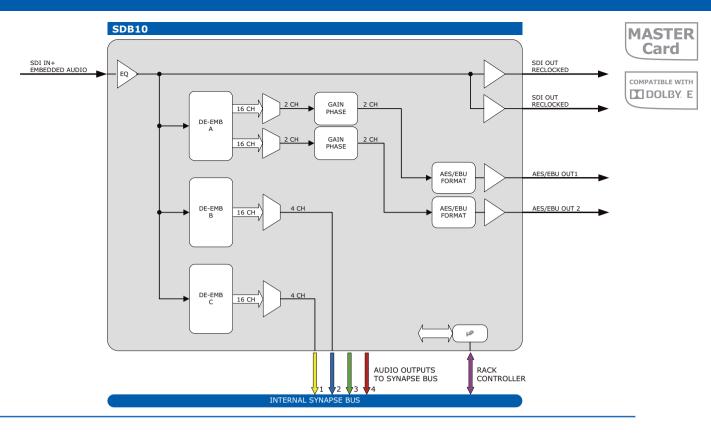
Fiber inputs:

- BPH01R_FC/PC_HDD10: I/O panel for HDD10 with fiber receiver on FC/PC
- BPH01R_SC_HDD10: I/O panel for HDD10 with fiber receiver on SC

	Ð	€	
HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc	\bigcirc
HD/SD-SDI RECLOCKED OUTPUT	\bigcirc	\bigcirc	\bigcirc
HD SDI PROCESSED OUTPUT 1	\bigcirc	\bigcirc	\bigcirc
HD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	0	\bigcirc	\bigcirc
	\bigcirc	\bigcirc	\bigcirc
	\odot		S
	\bigcirc		
	\bigcirc		
	\bigcirc		•
	÷	€	Ð
For fiber connectivity see www.axon.tv	BPH01	BPH02	BPH02D

Specifications

HD/SD Seria	l video input	HD serial vid	leo output
Standard	625/50 or 525/59.94 SMPTE	Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with		259M-C (270Mb/s) with
	SMPTE 272M embedded audio		SMPTE 272M embedded audio
	SMPTE 292M (1.5Gb/s),		SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,		SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M		SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,		1080i/59.94, 1080i/50,
	720p/59.94, 720p/50		720p/59.94, 720p/50
Equalization	Automatic to 100m	Signal level	800mV nominal
	@ 1.5Gb/s with Belden	DC offset	0V ±0.5V
	1694A or equivalent cable.	Rise and	
Return loss	> 15dB up to 1.5GHz	fall time	200ps nominal for HD, 750ps
			nominal for SD
		Overshoot	< 10% of amplitude


The Serial Mae	ooutput
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
	SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,
	720p/59.94, 720p/50
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise and	
fall time	200ps nominal for HD, 750ps
	nominal for SD
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
Wideband jitter	< 0.2UI

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts

SDB10 SD (2 AES/EBU) digital audio de-embedder with 8 extra channels through the ADD-ON bus

The SDB10 is a SD-SDI embedded audio extractor that outputs four local audio signals on the board itself and eight ADD-ON audio signals to one or two ADD-ON cards. All outputs of the SDB10 can be configured independently and every configuration is possible. The SDB10 outputs to two AES/EBU digital audio outputs. The SDB10 contains 3 groups de-embedding. (1 local 2 ADD-ON).

- Free selection of all mono embedded channels (1 out of 16 for every AES/EBU left or right output channel)
- Mono mode for the local AES/EBU outputs
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- 8 extra audio channels (two groups) with optional DAC20, DAC24, DAS24 and DIO48
- AES/EBU outputs on 3pole screw terminal (110 Ohms) or BNC (75 Ohms)
- EDH detection
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

 Generic AES/EBU de-embedding

Ordering information

- Module:
- SBD10: SD (2 AES/EBU) digital audio de-embedder with 8 extra channels through the ADD-ON bus

Standard I/O:

BPL02_SDB10:

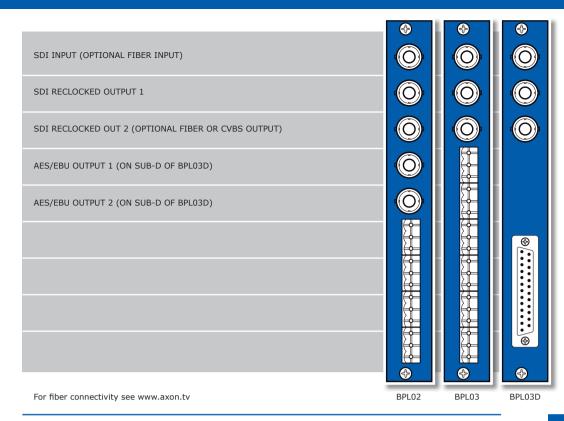
I/O panel for SDB10 with unbalanced AES/EBU out

- BPL03_SDB10:
 I/O panel for SDB10 with balanced AES/EBU out
- BPL03D_SDB10: I/O panel for SDB10 with balanced AES/EBU out on sub-D

DE-EMBEDDING

Fiber outputs:

- BPL02T_FC/PC_SDB10:
 I/O panel for SDB10 with fiber transmitter on FC/PC
- BPL02T_SC_SDB10:
 I/O panel for SDB10 with fiber transmitter on SC
- BPL03T_FC/PC_SDB10:
 I/O panel for SDB10 with fiber transmitter on FC/PC
- BPL03T_SC_SDB10:
 I/O panel for SDB10 with fiber transmitter on SC
- BPL03DT_FC/PC_SDB10:
 I/O panel for SDB10 with fiber transmitter on FC/PC


 BPL03DT_SC_SDB10:
 I/O panel for SDB10 with fiber transmitter on SC

Fiber inputs:

- BPL02R_FC/PC_SDB10:
 I/O panel for SDB10 with fiber receiver on FC/PC
- BPL02R_SC_SDB10:
 I/O panel for SDB10 with fiber receiver on SC
- BPL03R_FC/PC_SDB10:
 I/O panel for SDB10 with fiber receiver on FC/PC
- BPL03R_SC_SDB10:
 I/O panel for SDB10 with fiber receiver on SC
- BPL03DR_FC/PC_SDB10:
 I/O panel for SDB10 with fiber receiver on FC/PC
- BPL03DR_SC_SDB10:
 I/O panel for SDB10 with fiber receiver on SC

CVBS outputs:

- BPL02C_SDB10:
 I/O panel for SDB10 with
 CVBS output
- BPL03C_SDB10:
 I/O panel for SDB10 with
 CVBS output
- BPL03DC_SDB10:
 I/O panel for SDB10 with
 CVBS output

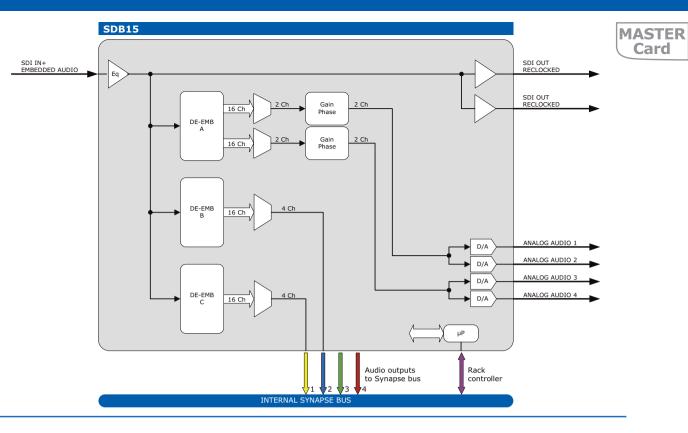
Specifications

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	
Return loss	> 15dB up to 270MHz	

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded au-
	dio
Number of	
outputs	2
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

AES output Number of outputs 2 Connector BNC, Screw terminal or 25 pins female sub-D (balanced) Resolution 24 bits Sampling rate 48KHz synchronous


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<5 Watts

SDB10

SDB15 SD 4 channel analog audio de-embedder with 8 extra channels through the ADD-ON bus

The SDB15 is a SD-SDI embedded audio extractor that outputs four local analog audio signals on the board itself and eight ADD-ON audio signals to one or two ADD-ON cards. All outputs of the SDB15 can be configured independently and every configuration is possible. There are 4 local-outputs and up to 8 ADD-ON outputs. Every local or ADD-ON output can be independently assigned to one of the 16 embedded audio channels. Note, that the Phase and Gain control of the ADD-ON outputs of the SDB15 can be manipulated on the ADD-ON cards. The SDB15 contains a 3 groups de-embedder. (1 local 2 ADD-ON).

- 12 channel de-embedder (4 local 8 ADD-ON)
- Free selection of all mono embedded channels (1 out of 16 for every output channel)
- Mono mode for the local outputs
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- 8 extra audio channels (two groups)with optional DAC20, DAC24, DAS24 and DIO48
- Transformer properties with low impedance audio drivers.
- Selectable +12, +15, +18 and +24 dBu for 0dBFS
- Outputs on 3 pole screw terminal or sub-D
- EDH detection
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Generic analog audio de-embedding

Ordering information

Module:

SBD15: SD 4 channel analog audio de-embedder with 8 extra channels through the ADD-ON bus

Standard I/O:

BPL02_SDB15:

I/O panel for SEB15 with balanced analog audio out

BPL02D_SDB15:

I/O panel for SEB15 with balanced analog audio out on sub-D

Fiber outputs:

- BPL02T_FC/PC_SDB15: I/O panel for SDB15 with fiber transmitter on FC/PC
- BPL02T_SC_SDB15: I/O panel for SDB15 with fiber transmitter on SC
- BPL02DT FC/PC SDB15: I/O panel for SDB15 with fiber transmitter on FC/PC
- BPL02DT SC SDB15: I/O panel for SDB15 with fiber transmitter on SC

Fiber inputs:

- BPL02R_FC/PC_SDB15: I/O panel for SDB15 with fiber receiver on FC/PC
- BPL02R_SC_SDB15: I/O panel for SDB15 with fiber receiver on SC
- BPL02DR_FC/PC_SDB15: I/O panel for SDB15 with fiber receiver on FC/PC
- BPL02DR_SC_SDB15: I/O panel for SDB15 with fiber receiver on SC

CVBS outputs:

- BPL02C_SDB15: I/O panel for SDB15 with CVBS out
- BPL02DC_SDB15: I/O panel for SDB15 with CVBS out

	₽	\
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc
SDI RECLOCKED OUTPUT 1	\bigcirc	\bigcirc
SDI RECLOCKED OUTPUT 2 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	\bigcirc
	\bigcirc	\bigcirc
	\bigcirc	\bigcirc
ANALOG AUDIO OUTPUT 1		
ANALOG AUDIO OUTPUT 2		
ANALOG AUDIO OUTPUT 3		
ANALOG AUDIO OUTPUT 4		
	€	€
For fiber connectivity see www.axon.tv	BPL02	BPL02D

Specifications

Return loss

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	

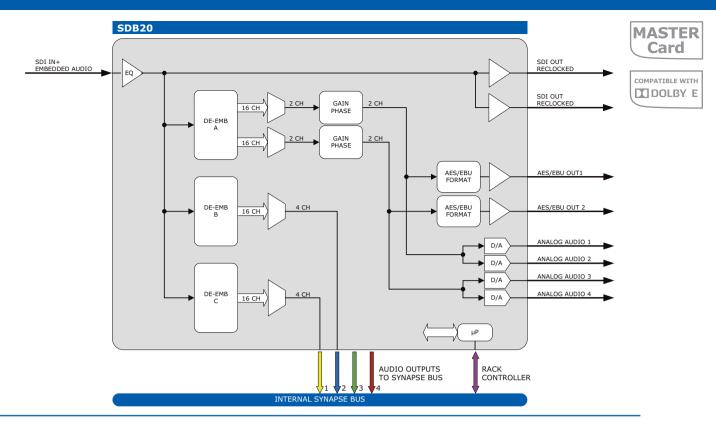
SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	2
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

> 15dB up to 270MHz

Analog audio output

······································	- aspas
Туре	Balanced analog audio
Number of	
outputs	4
Connector	removable terminal strips or
	25 pins female sub-D
Impedance	50 Ohms balanced
Signal level	0dB FS => 12dBu, 15dBu,
	18dBu or 24dBu
Frequency	
response	$<\pm0.05$ dB (20Hz to 20kHz)
Gain mismatch	< 0.25 dB @997Hz, -20dBFS
	Multi channel
THD+N	< 92dB @ 1kHz, -1dBFS
Crosstalk	< -100dB (20Hz to 20kHz)
DC offset	< ±30mV
Dynamic range	> 97dB @-60dBFS


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts

SDB20 SD 4 channel analog audio and digital audio de-embedder with 8 extra channels through the ADD-ON bus

The SDB20 is an SD-SDI de-embedder with analog and digital audio outputs. The 4 Analog audio outputs are coupled with the local AES/EBU outputs. Audio can be routed with SDB20 from any embedded audio channel to any addressable output channel. There are 4 local-outputs (duplicated in digital and analog domain) and up to 8 ADD-ON outputs.

Every local or ADD-ON output can be independently assigned to one of the 16 embedded audio channels. Note, that the Phase and Gain control of the ADD-ON outputs of the SDB20 can be controlled on the ADD-ON cards.

- 12-channel de-embedder (4 local 8 ADD-ON)
- Free selection of all mono embedded channels (1 out of 16 for every output channel)
- Mono mode for the local outputs
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- 8 extra audio channels (two groups)with optional DAC20, DAC24 and DAS24
- AES/EBU outputs on 3 pole screw terminal or sub-D (110 Ohms) or BNC (75 Ohms)
- Transformer properties with low impedance audio drivers for analog outputs
- Selectable +12, +15, +18 and +24 dBu for 0dBFS
- Analog outputs on 3pole screw terminal or sub-D
- EDH detection

- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

 Generic analog and/or digital audio de-embedding

Ordering information

Module:

 SBD20: SD 4 channel analog audio and digital audio de-embedder with 8 extra channels through the ADD-ON bus

Standard I/O:

- BPL02_SDB20:
 I/O panel for SDB20 with unbalanced AES/EBU out and balanced analog audio out
- BPL02D_SDB20:
 I/O panel for SDB20 with unbalanced AES/EBU out and balanced analog audio out on sub-D

BPL03_SDB20:

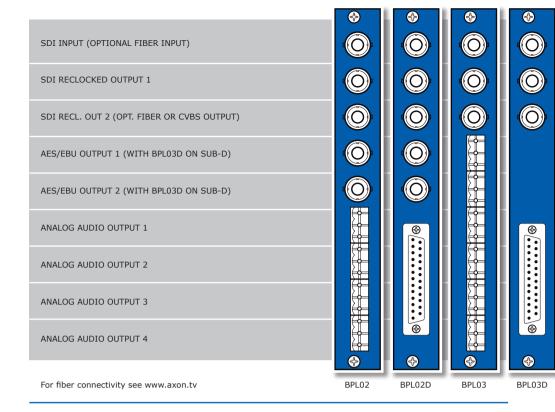
I/O panel for SDB20 with balanced AES/EBU out and balanced analog audio out

 BPL03D_SDB20:
 I/O panel for SDB20 with balanced AES/EBU out and balanced analog audio out on sub-D

Fiber outputs:

- BPL02T_FC/PC_SDB20:
 I/O panel for SDB20 with fiber transmitter on FC/PC
- BPL02T_SC_SDB20:
 I/O panel for SDB20 with fiber transmitter on SC
- BPL03T_FC/PC_SDB20:
 I/O panel for SDB20 with fiber transmitter on FC/PC
- BPL03T_SC_SDB20:
 I/O panel for SDB20 with fiber transmitter on SC

DE-EMBEDDING


- BPL02DT_FC/PC_SDB20:
 I/O panel for SDB20 with fiber transmitter on FC/PC
- BPL02DT_SC_SDB20:
 I/O panel for SDB20 with fiber transmitter on SC
- BPL03DT_FC/PC_SDB20:
 I/O panel for SDB20 with fiber transmitter on FC/PC
- BPL03DT_SC_SDB20:
 I/O panel for SDB20 with fiber transmitter on SC

Fiber inputs:

- BPL02R_FC/PC_SDB20:
 I/O panel for SDB20 with fiber receiver on FC/PC
- BPL02R_SC_SDB20:
 I/O panel for SDB20 with fiber receiver on SC
- BPL03R_FC/PC_SDB20:
 I/O panel for SDB20 with fiber receiver on FC/PC
- BPL03R_SC_SDB20: I/O panel for SDB20 with fiber receiver on SC
- BPL02DR_FC/PC_SDB20:
 I/O panel for SDB20 with fiber receiver on FC/PC
- BPL02DR_SC_SDB20:
 I/O panel for SDB20 with fiber receiver on SC
- BPL03DR_FC/PC_SDB20:
 I/O panel for SDB20 with fiber receiver on FC/PC
- BPL03DR_SC_SDB20:
 I/O panel for SDB20 with fiber receiver on SC

CVBS outputs:

- BPL02C_SDB20:
 I/O panel for SDB20 with
 CVBS out
- BPL02DC_SDB20:
 I/O panel for SDB20 with
 CVBS out
- BPL03C_SDB20:
 I/O panel for SDB20 with
 CVBS out
- BPL03DC_SDB20:
 I/O panel for SDB20 with
 CVBS out

Specifications

Serial video in	•	Signal level	0dB FS => 12dBu, 15dBu,
Standard	625/50 or 525/59.94 SMPTE		18dBu or 24dBu
	259M-C (270Mb/s) with	Frequency	
	SMPTE 272M embedded audio	response	$< \pm 0.05$ dB (20Hz to 20kHz)
Number of		Gain mismatch	< 0.25 dB @997Hz, -20dBFS
inputs	1		Multi channel
Equalization	Automatic to 300m	THD+N	< 92dB @ 1kHz, -1dBFS
	@ 270Mb/s with Belden	Crosstalk	< -100dB (20Hz to 20kHz)
	1694A or equivalent cable	DC offset	< ±30mV
Return loss	> 15dB up to 270MHz	Dynamic range	> 97dB @-60dBFS
SD serial vide	o output	AES output	
Standard	625/50 or 525/59.94 SMPTE	Number of	
	259M-C (270Mb/s) with	outputs	2
	SMPTE 272M embedded audio	Connector	BNC, Screw terminal or 25
Number of			pins female sub-D (balanced)
outputs	2	Resolution	24 bits
Signal level	800mV nominal	Sampling rate	48KHz synchronous
DC offset	0V ±0.5V		
Rise/fall time	800ps nominal	Miscellaneous	
Overshoot	< 10% of amplitude	Weight	Approx. 250g
Return loss	> 15dB up to 270MHz	Operating	
		temperature	0 °C to +50 °C
Analog audio	output	Dimensions	137 x 296 x 20 mm (HxWxD)
Туре	Balanced analog audio		
Number of		Electrical	
outputs	4	Voltage	+24V to +30V
Connector	removable terminal strips or	Power	<8 Watts

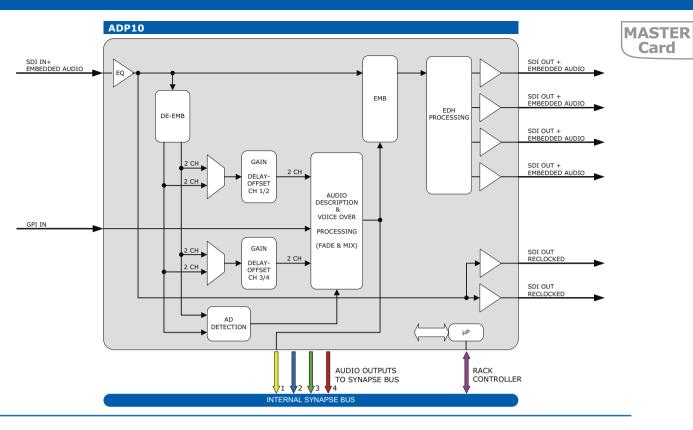
25 pins female sub-D

50 Ohms balanced

Impedance

SDB20

HAS20: GUI shows the logical flow of signal processing through the card, multiple controls within a card which combine to produce an end result such as the selection. shuffling and embedder group of audio in the HAS20 are presented to ease understanding.


HVO10: Shows the logical flow of signal processing through the card.

Iron Year 8 1	Cantrol View					
10: PONDE RE Qual Sal 10: 2000 TWB RE-004 diamonation 10: 2000 TWB RE-004 diamonation 10: PTCL2/PD No. Toucler	Linch	D-0321.MSW	Ski Narden B Bry	(a	Current: Service	
** 10: CROOD						
THE OT, HOWERE HE caused task	/ Preat					
. OI: MOLCHERSD Via - Over Inset/Entrel	Prevet. #1	in the				
······································	Audio More A		Adds Now E			
1 13: KO100 Pul HD Turine Converse	SOURCE.	6435	590.00	SAN .		
11: KONDI Pul HD Turnet converse	Program Audra &	and the second second	Program Burdo B	and the second second		
T 12 TOTO A POTI AND CONTRACT	041 0.1	- 10	045 015 10	2 0.00		
T 13 YOM F AND AND AND ANY ANY						
· IN PROTOTO CONVERSION	2100	The second second	Contract of the local division of the local	10.00	ProgramDulog	
* 12:105/07.4 10 family converter	042 3.7		014 016 18	and a second second	Grynt	
* 131/105/1 Put ID fund converse					177 Mill data	
# 17/PSUE1PDUD convertee	012 01		0+7 (1.7 18	0.00		
* 131: PSUDD PD Lts converted till	0.0	a second second	St. 50 11			
# 128:PDUILTO La convertecTM						
 ID: KEELE Full Police and converses 	011 0.1	THE R. LEWIS CO.	010 010 01	0.00		
e 21 - 2000 Standards surveiter	0.0		510 Sta			
 20. 2021 20 standards savester 				-		
and a result of the second and a second and	Lincal Audio A		UNIÓA DE D			
In 28 INCOMPTO View Over Sectionies	tica acocia	and the second second	Look Look	The second second		
To all Hill 10 log bester	OH1 MISI	 0.00 (d) 	0H5 AP35 in	0.00		
an (25, CDP)+ Delet + Deceler				1000		
and CP - VADD Reset Level VI and W23 evenier		11/1 15000 March		STOCK STREET, STOCK		
 23: 20/18 20 full and 20 used 1/256 5/64 	012 452	210	CH4 ACX6	1 0.00	Local Divisio	
e 125. D/D/D/Web Deler				1 10 10	Lave	
a 100 Ditto 10 Viley Deles	200000	And in case of the local division of the loc	and the second s	Contraction of the	TT III art	
and DL - TOCOD Twelfing Report of	0H3 A553		04.7 ALS7	1.00		
# -30. WHID M and WIS detectiventer						
1 20: WIDD Prest Level 12 and WID events	12200-00-00	and the second second	Contraction of the local division of the loc	100		
104 24211 24211	014 451		OHI AGIA (H			
a 10. (0407 Equie Restuding Date Area						
a - 30 - 30400 Perchability Date Away	115					
and the statement of and and have been the	100 March 100 Ma					

HCL10: Shows the status at a glance and represents audio levels in a traditional way with level meters rather than numbers that potentially change rapidly.

a View R X	Central View				
 PASSIMPT Auto Shaffier taxes: IPT involutio() 4	Sleetby Card Prije: HG30 HG104 Harristel: Http://dec.Auto.Com Compresses/Janker: JO Cardrol	d In Sitt Aurilier	19.141.120 See. 137 Sec.	Edit Derain Gravel Server	
- INCLUS [DOCUMENTANI] [IN]	20 June	fuestidates			
HOLIF-CID Only Auto Complex (202.168.0.2.)	and the second			. Redator	
HIGHTHOUSE Auto Comptant (202,158 D.L.	Fierret 😋 10425	1		terrent of the second	
HERITARY SHARANAY [THE ISS IS 10][97]	an 🙆 (A	ing have a D D D			COLUMN TWO IS NOT
HER/UHE/SCI Auto De endertore (FRE 168-81-31	and the second second	an Growtent 🕥			E E 200
HERRING SHOPE Suby F-C Sevencesber (192-195	anc 😋 on	and the second s			
- (HEE18) E(SD Dyby E Cybecade [192 568.8.51]	04	Terrist Data			
HDR07HD-day burner [132.108.0.225](13]	Station and Station				
H04071(100.168.0.149)(11)	Addra CE G CORPORT	Partie 20102 CD RCM			
+6600 HD-date Bulley [130:168.0.31][10]	Auto 613 6 4010-275	C C C C C C C C C C C C C C C C C C C			
10101016-021 com-converter [102.1010.0131][62]	arithman 🕥	Pomer Allina Coll			
HEIGH Full HEI Netwark conversion [152:153-8130]	STOCTOR .				
indester malineer famma and second and [152,133,6,34.0] -	-arcstein 😗 👯	Firme EL/82 🧿 POH			
HOW REPORTED AND A DAY AND A DAY AND A DAY	and the second second	and the second second second	The Party of the P		100
HOW REPORTED AND A DECK DATE OF THE AND A DECK DATE OF THE OFFICE AND A DECK DATE OFFICIAL A DECK DATE OFFIC	1.000 (PT #1	and the second second second	AD AD AD MI II	NE 10 P1 41 42 43 44 1	1 12 13 14
 HOW REPORTED AND WIGH, SHEAR (197, 1973) 2013 [344] HERRING Extended (197, 2010) 2013 [2013] HERRING (2017, 2010) And a Chile and a Chill (1017, 1018) 2013 [2017] 	and the second second	and the second second second	The Party of the P	in the second	100
 HOWLE HO ALBOY HORSE, SHER (199, 1993) 213 [394] HERRING HARRING (199, 2008) 213 [200] HERRING (2009) Andre Endonation (1997, 100 at 2011 [200]) HERRING (2009) Andre Endonation (1997, 100 at 2011 [200]) HERRING (2009) Andre Endonation (1997, 100 at 2011 [200]) 	1.000 (PT #1	and the second second second	A2 - A2 A3 M B	10 10 11 AL A2 A3 A4 A	100
	Lund OF #1	and the second second second	A2 - A2 A3 M B	10 10 11 AL A2 A3 A4 A	100
International Activity (International State International Activity) (International State International Activity) (International Activity) International Context (International Activity) International Context (International Activity) International Activity (Internation	1.000 (PT #1	and the second second second	A2 - A2 A3 M B	10 10 11 AL A2 A3 A4 A	100
retront rock to work, son [str.ten.t.m][st] retront rock to work (str.ten.t.m][st] retront rock to work (str.ten.t.m][st] retront rock to device (str.ten.t.m][st] retront rock to device (str.ten.t.m][st] retront rock to device (str.ten.t.m][st] retront rock to work (str.ten.t.m][st] retront rock to work (str.ten.t.m][st] retront rock to work (str.ten.t.m][st]	Look OF F	Porne Eight 🕥 POH	A2 A2 A3 M B1 Double	E E P P A A2 A2 A A	
PORT POLICY NOTATION (100, 100, 101, 100, 101) POLICY OLD (100, 100, 100, 100, 100) POLICY OLD (100, 100, 100, 100, 100, 100, 100, 100	Look 495 41 Mich 6 Katal Norry Mana No. 300 Mich 61(2) 58	Paras Eight () (13)	Al A2 A3 M B Dourse Starts New HCLID FOID Lette Auth Energies ()	Feel Decision Free Decision March 1 Al Al Al Al Al Al Source Free Decision March 1 Add Ch / Holio AlMon	Alverleije
encycle robust on kooles, soon al (no. 1996 an 1996) encycle robust on kooles, soon al (no. 1996 an 1996) encycle robust on kooles (no. 1996 an 1997) encycle robust on kooles (no. 1	Look 075 41 Will 0 Value Nerry France Nerry Scott 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Pome E204 © PCH	Al-A2 A3 M B Doven	E ID IN AL AL AD AN	
PROFILED ALL IN MODEL AND LEASE [111, 109, 2013][10] PRESENCE AND ADDITED ALL INFORMATION ADDITED ADDITED ALL INFORMATION ADDITED ADD	Luce 495 F1 1952L © Fearing Na. 199 Good T14 (1527) Meaning T24 (1527) Meaning T24 (1527)	Promot Eight © PCN 27 Address 12 21/C7/2000 112 Mill & 2 13 21/C7/2000 122 Mill & 2 14 21/C7/2000 12 14 21/C7/2000 12 14 21/C7/2000 12	AL AZ AJ M BI Douris CLID HOLD IND Addr Dreydd D HCLID HOLD IND Addr Dreydd D	III. Data AL AL AL AL III. Data AL AL AL AL III. Data AL AL AL AL AL III. Data AL AL AL AL AL AL III. Data AL AL AL AL AL AL III. Data AL AL </td <td>Alverleije</td>	Alverleije
encourte coluit on insole, sees (internet and type) encourte coluit on insole, sees (internet and insole (internet)) encourte coluit on insole and	Local (P) 21 PELL C Tell Al Roomy Falance Metal Metal Tal (Social Social	2 2 Adhean 12 2 2 47 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	An Al Al M B Device Comments of the second s	Real Development Free Conceptor Real Development Real Developme	Alverleije
encourter-to-like to vision_sets [1:0, 1:09, 5:13][e1] relation (C-sete-like 1:19, 2:06, 5:13][0:0] relation (C-2) Ando Enclosed to 11:00, 0:14, 0:14][1:0] relation (C-2) Ando Enclosed to 11:01, 0:14, 0:14][1:0] relation (C-2) Ando Enclosed to 11:01, 0:14, 0:16][1:0] relation (C-2) Ando Enclosed to 11:01, 0:16, 0:16][1:0] relation (C-2) Ando Enclosed to 11:01, 0:16][1:0] relation (C-2) Ando Enclosed to 11:02, 0:16][1:0]	TAADAUTY HILL C France No. Too France No. Too France 20 Marting 20	Process Earlier Concession 27 Address 12 21/27/2000 11/2 Millio 20 13 21/27/2000 12/2 Millio 20 13 21/27/2000 12/2 Millio 20 13 21/27/2000 12/2 Millio 20 13/2 Million 20	AL AL AL M B Source Source Sou	E2 E4 A2 A2 A3 A4 E4 E4 A3 A4 A3 A4 E4 E4 A3 A4 A5 A4	Alvordelje
encourte could un vacue, sease (internet an statistic encourte could be internet (internet and internet) encourte could be advected internet (internet) encourte could be advected internet) encourte could be advected internet (internet) encourte could be advected internet (internet) encourte could be advected internet) encourte could be advected internet (internet) encourte could be advected internet) encourte could be advected internet (internet) encourte could be advected internet) encourte could be advected internet (internet) encourte could be advected internet) encourte could be advected internet (internet) encourte could be advected internet) encourte could be advected internet (internet) encourte could be advected internet) encourte could be ad	Load 495 41 9542 6 1000 100 100 100 100 1000 100 100 100 1	2 2 Adhean 2 2 Adhean 12 200470000 13 200400 20 14 200400 14 200400 14 200400 14 200400 14 200400 14 200400 14 200400 14 200400 14 20040 14 200	AC AZ AZ AN AN Source News CLED HOLD Eno Adalo Denglato CLED HOLD Eno Adalo Denglato	Event Description Event Descrip	Alverleije
encourte DOLAL IN MODE, SAGE [191, 199, 5-13][44] relation & extended - 191, 2016, 0.231[100] relation & Courte Andread - 191, 2016, 2011[100] relation & Courte Andread - 1912, 0.46, 2010[100] relation & Courte Andread - 2010[100] re	Local VP: F1 VEALNUT/ F1 Filler F1 F1 F1	Processing Control (Control (Contro) (Control (Contro) (Contro) (Contro) (Contr	AC A2 A1 M B Source Company of the Source Co	E B AL AL AL AL FM Source Source Source Source E B Source Source Source Source E B Source Au Source S	Alvordelje
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Load 495 41 House 41	2010 E214 C EXX	AC AZ AZ AL M. B Source CLED Folget Ene Adde Deregfan I CLED Folget Ene Adde Deregfan I	Read Description Aut. All. All. All. All. Event Description Source Read Description Source Re	Already
emption (Cold, 10) winder, Send, 100, 100, 100, 100, 100, 100, 100, 10	Local 497 E1 HIGE 60 F1 HIGE 70 F1 Status 10 F1	Processing Control (Control (Contro) (Control (Contro) (Contro) (Contro) (Contr	AC AZ AZ AL M. B Source Sources HILDE MORE Deve Auto Deve (Art 15 HILDE MORE DEVE (Art	E 0 0 4 42 A2 A3 E 0 3	Alreoluty
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Luce 197 4 House 197 4 House 1 Hanne	27 Address 127 Address 127 Dig Mill St 127 Dig	AL AL AL M B Source Source Sou	Rest Date Add A	Alreoluty
emption (Cold, 10) winder, Send, 100, 100, 100, 100, 100, 100, 100, 10	Local 497 E1 HIGE 60 F1 HIGE 70 F1	Processing of the second	AD AZ AA M M Source Source Source Source Source MILD MODE Date Audit Date Formation Source	E 0 0 4 42 A2 A3 E 0 3	Alvorinija

ADP10 Audio description processor for SDI embedded audio

The ADP10 is the embedded equivalent of the ADP24. The card is designed to decode an audio description track that is part of an SDI embedded audio stream. It reads the audio description track (default channel 3/4) and mixes this with the program material (channel 1/2). The result is then overwritten in the original audio description track (default 3/4). The user is free to change the default track description, and change the individual offset delay of the audio tracks. The ADP cards are designed for flexible integration in transmission environments.

- Audio description or voice-over mode
- Automatic audio description detection
- Any 4 channels out of any 16 embedded.
- Adjustable voice-over, fade-in and fadeout time
- Flexible channel assignment
- Audio re-insertion in any of 4 groups
- 2 reclocked outputs
- 4 processed outputs
- Adjustable offset delay per mono channel
- Gain (0.25db steps) and phase control (0-180 deg) per channel
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Ó

Ô

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ô

Ó

Ó

BPX01

elay bypass

 (\mathcal{A})

Ô

Ô

 \bigcirc

 \bigcirc

Ô

BPL01

Applications

- Embedded domain audio description processing
- Embedded domain voice over applications

Ordering information

Module:

 ADP10: audio description processor for SDI embedded audio

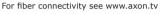
Standard I/O:

BPL01_ADP10:
 I/O panel for ADP10

 BPX01_ADP10:
 I/O panel for ADP10 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_ADP10:
 I/O panel for SFS10 with fiber transmitter on FC/PC
- BPL01T_SC_ADP10:
 I/O panel for SFS10 with fiber transmitter on SC


Fiber inputs:

- BPL01R_FC/PC_ADP10:
 I/O panel for SFS10 with fiber receiver on FC/PC
- BPL01R_SC_ADP10:
 I/O panel for SFS10 with fiber receiver on SC

CVBS output:

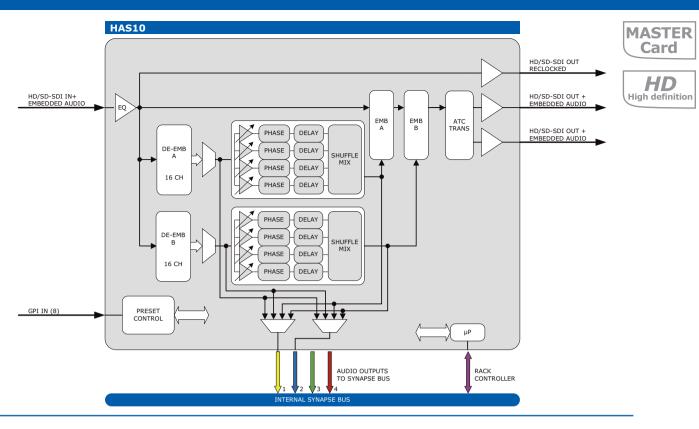
BPL01C_ADP10:
 I/O panel for ADP10 with
 CVBS output

SDI INPUT (OPTIONAL FIBER INPUT)	
SDI RECLOCKED OUTPUT 1	
SDI RECLOCKED OUTPUT 2	
SDI PROCESSED OUT 1 (OPTIONAL FIBER OR CVBS OUTPUT)	
SDI PROCESSED OUTPUT 2	
SDI PROCESSED OUTPUT 3	
SDI PROCESSED OUTPUT 4	
GPI INPUT (VOICE OVER)	

Specifications

Serial video input			
Standard	625/50 or 525/59.94 SMPTE		
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio		
Number of			
inputs	1		
Equalization	Automatic to 300m		
	@ 270Mb/s with Belden		
	1694A or equivalent cable		
Return loss	> 15dB up to 270MHz		

SD serial video output


Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	4
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

MiscellaneousWeightApprox. 250gOperatingtemperature0 °C to +50 °CDimensions137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<6 Watts

HAS10 HD/SD 8-channel 2-group embedded audio processing card with presets

The HAS10 is an 8 channel in 2 group preset based HD/SD-SDI embedded audio shuffler/mixer. AXON is an industry first with this comprehensive card, and puts full audio control power in to the hands of an HD-SDI embedded signal user. Individual gain, phase and delay control for each channel are also part of this powerful card. The preset based control of this card makes it ideal for repeated corrections or standard channel swapping occasions in a multi lingual environment. If dynamic control is required the card can still perform this task as every preset is remote controllable by a third party control protocol or our dedicated control panel SCP08.

- HD-SDI and SD-SDI compatible (functional equivalent to SD is SAS30)
- 8 channel selection (any 8 out of 16)
- 8 presets (GPI or ACP controlled)
- Dual 4 channel mix (group) with the option to add 4 channels into 1.
- Pre and post monitoring with ADD-ON card
- Audio input gain (0.25dB steps)
- Audio input phase (0 180 deg)
- Audio peak detection
- Audio input delay offset (0 to 2600 ms)
- Transparent for ATC time code RP188, RP196, RP215
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Applications

- Ingest audio channel correction (HD)
- Preset based play-list audio shuffling
- OB van audio shuffling with job determined presets

Ordering information

Module:

HAS10: HD/SD 8-channel 2-group embedded audio processing card with presets

Standard I/O:

BPH03_HAS10: I/O panel for HAS10

Fiber outputs:

- BPH03T_FC/PC_HAS10: I/O panel for HAS10 with fiber transmitter on FC/PC
- BPH03T_SC_HAS10: I/O panel for HAS10 with fiber transmitter on SC

Fiber inputs:

- BPH03R_FC/PC_HAS10: I/O panel for HAS10 with fiber receiver on FC/PC
- BPH03T SC HAS10: I/O panel for HAS10 with fiber receiver on SC

HD/SD	SDI	INPUT	(OPTIONAL	FIBER	INPUT)
	001		(01.11010.12		

RECLOCKED OUTPUT

PROCESSED OUTPUT 1

PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)

GPI INPUTS (PRESETS)

For fiber connectivity see www.axon.tv

Specifications

HD/SD Serial video input		HD serial video output	
Standard	625/50 or 525/59.94 SMPTE	Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with		259M-C (270Mb/s) with
	SMPTE 272M embedded audio		SMPTE 272M embedded audio
	SMPTE 292M (1.5Gb/s),		SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,		SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M		SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,		1080i/59.94, 1080i/50,
	720p/59.94, 720p/50		720p/59.94, 720p/50
Equalization	Automatic to 100m	Signal level	800mV nominal
	@ 1.5Gb/s with Belden	DC offset	0V ±0.5V
	1694A or equivalent cable.	Rise and	
Return loss	> 15dB up to 1.5GHz	fall time	200ps nominal for HD, 750ps
			nominal for SD
		Overshoot	< 10% of amplitude
		Return loss	> 15dB up to 1.0Gb/s,

BPH03

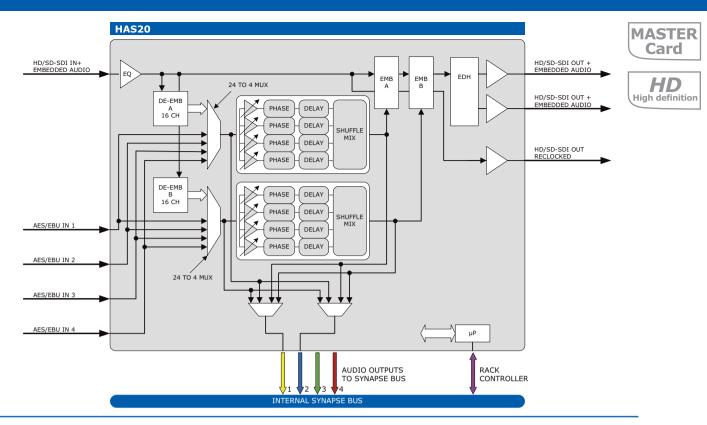
HAS10

0 °C to +50 °C
137 x 296 x 20 mm (HxWxD)
$\pm 24 V$ to $\pm 30 V$

> 10dB up to 1.5Gb/s

Approx. 250g

Wideband jitter < 0.2UI


Miscellaneous

Weight

Operating

temperature Dimensions

Voltage	+24V to +30V
Power	<7 Watts

HAS20 HD/SD 8-channel 2-group embedded audio processing card with local AES/EBU inputs

The HAS20 is an 8-channel in 2-group preset-based HD-SDI embedded audio shuffler/mixer. AXON is an industry first with this comprehensive card, and puts full audio control power into the hands of an HD-SDI embedded signal user. Individual gain, phase and delay control for each channel are also part of this powerful card. The preset-based control of this card makes it ideal for repeated corrections or standard channel swapping occasions in a multi-lingual environment. If dynamic control is required the card can still perform this task as every preset is remote controllable by a third party control protocol or the dedicated control panel SCP08.

- 4 local AES/EBU inputs
- HD-SDI and SD-SDI compatible (functional equivalent to SD is SAS30)
- 8-channel selection (any out of 16 embedded + any out of 8 from local AES/EBU inputs)
- 8 presets (ACP controlled)
- Pre and post monitoring with ADD-ON card
- Audio input gain (0.25dB steps)
- Audio input phase (0 180 deg)
- Audio input delay offset
- Mix of any 4 channels in group A embedder and group B embedder
- Overwrite and append modes
- Peak detection 0, -6, -12 and -18dBFS
- Silence detection with threshold (-100 to -20dBFS) and time control (1 to 255 sec)

- Transparent for ATC time code RP188, RP196, RP215
- Audio format detection (e.g. AC3, Dolby E and PCM)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

HAS20

Applications

- HD/SD SDI audio shuffling with external source inputs
- MCR audio shuffling and swapping (for non compliant input signals)

Ordering information Module:

HAS20: HD/SD 8 channel 2 group embedded audio processing card with local AES/ EBU inputs

Standard I/O:

- BPH01_HAS20: I/O panel for HAS20 with unbalanced AES/EBU out
- BPH02_HAS20: I/O for HAS20 with balanced AES/EBU out
- BPH02D_HAS20: I/O panel for HAS20 with balanced AES/EBU out on sub-D

Fiber outputs:

- BPH01T_FC/PC_HAS20: I/O panel for HAS20 with fiber transmitter on FC/PC
- BPH01T_SC_HAS20: I/O panel for HAS20 with fiber transmitter on SC
- BPH02T_FC/PC_HAS20: I/O panel for HAS20 with fiber transmitter on FC/PC
- BPH02T_SC_HAS20: I/O panel for HAS20 with fiber transmitter on SC
- BPH02DT_FC/PC_HAS20: I/O panel for HAS20 with fiber transmitter on FC/PC
- BPH02DT_SC_HAS20: I/O panel for HAS20 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HAS20: I/O panel for HAS20 with fiber receiver on FC/PC
- BPH01R_SC_HAS20: I/O panel for HAS20 with fiber receiver on SC
- BPH02R_FC/PC_HAS20: I/O panel for HAS20 with fiber receiver on FC/PC
- BPH02R SC HAS20: I/O panel for HAS20 with fiber receiver on SC
- BPH02DR_FC/PC_HAS20: I/O panel for HAS20 with fiber receiver on FC/PC
- BPH02DR_SC_HAS20: I/O panel for HAS20 with fiber receiver on SC

HD/SD SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc	0
HD/SD SDI RECLOCKED OUTPUT	\bigcirc	\bigcirc	\bigcirc
HD/SD SDI PROCESSED OUTPUT 1	\bigcirc	\bigcirc	\bigcirc
HD/SD SDI PROC. OUTPUT 2 (OPTIONAL FIBER OUTPUT)	Ó	\bigcirc	0
	\bigcirc	\bigcirc	0
AES/EBU INPUT 1	\bigcirc		®
AES/EBU INPUT 2	\bigcirc		
AES/EBU INPUT 3	\bigcirc		
AES/EBU INPUT 4	\bigcirc		
	- ↔		e

For fiber connectivity see www.axon.tv

Specifications

HD/SD Serial video input

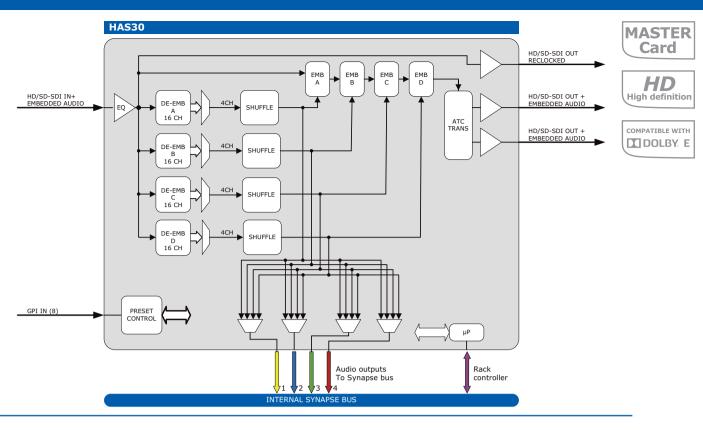
HD/SD Seria	l video input	AES audio inp	out
Standard	625/50 or 525/59.94 SMPTE	Connector	BNC, Screw terminal or
	259M-C (270Mb/s) with		25 pins female sub-D
	SMPTE 272M embedded audio		(balanced)
	SMPTE 292M (1.5Gb/s),	Standard	AES-1992 for balanced
	SMPTE 260M, SMPTE 274M,		synchronous or asynchro
	SMPTE 296M, SMPTE 349M		nous PCM/AES, SMPTE 2
	1080i/59.94, 1080i/50,		for single ended synchro
	720p/59.94, 720p/50		or asynchronous PCM/AE
Equalization	Automatic to 100m	Number of	
	@ 1.5Gb/s with Belden	inputs	4
	1694A or equivalent cable.	Sampling rate	32 kHz to 96 kHz A-Syno
Return loss	> 15dB up to 1.5GHz		nous via SRC and 48 kH
			Synchronous in transpar

HD serial video output

Standard	625/50 or 525/59.94 SMPTE	Resolution
	259M-C (270Mb/s) with	Minimun
	SMPTE 272M embedded audio	output d
	SMPTE 292M (1.5Gb/s),	Impedar
	SMPTE 260M, SMPTE 274M,	Level
	SMPTE 296M, SMPTE 349M	
	1080i/59.94, 1080i/50,	
	720p/59.94, 720p/50	Miscella
Signal level	800mV nominal	Weight
DC offset	0V ±0.5V	Operatin
Rise and fall time	200ps nominal for HD, 750ps	tempera
	nominal for SD	Dimensio
Overshoot	< 10% of amplitude	
Return loss	> 15dB up to 1.0Gb/s,	Electric
	> 10dB up to 1.5Gb/s	Voltage
Wideband jitter	< 0.2UI	Power

BPH02

BPH02D


BPH01

	25 pins female sub-D
	(balanced)
andard	AES-1992 for balanced
	synchronous or asynchro-
	nous PCM/AES, SMPTE 276M
	for single ended synchronous
	or asynchronous PCM/AES
umber of	
puts	4
ampling rate	32 kHz to 96 kHz A-Synchro-
	nous via SRC and 48 kHz
	Synchronous in transparent
	mode (Dolby E)
esolution	24 bits in HD, 20 bits in SD
inimum input/	
utput delay	1 ms
npedance	110 Ohms or 75 Ohms
evel	0.2V to 1V nom for BNC, 2V
	to 7V for balanced operation

aneous

Veight	Approx. 250g
Operating	
emperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

age	+24V to +30V
/er	<8 Watts

HAS30 HD/SD 16-channel 4-group embedded audio shuffler card with presets

The HAS30 is a 16 channel in 4 group preset based HD/SD-SDI embedded audio shuffler. AXON is an industry first with this comprehensive card, and puts full audio control power in to the hands of an HD-SDI embedded signal user. The preset based control of this card makes it ideal for repeated corrections or standard channel swapping occasions in a multi lingual (combined with Dolby E) environment. If dynamic control is required the card can still perform this task as every preset is remote controllable by a third party control protocol or our dedicated control panel SCP08.

- HD-SDI and SD-SDI compatible
- 16 channel selection (any 16 out of 16)
- 8 presets (GPI or ACP controlled)
- Post monitoring with ADD-ON card
- Silence detection with threshold (-100 to -20dBFS) and time control (1 to 255 sec)
- Transparent for ATC time code RP188, RP196, RP215
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

 \mathbf{O}

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

BPH03

Applications

- Preset based play-list audio shuffling
- OB van audio shuffling with job determined presets

Ordering information

Module:

HAS30: HD/SD 16-channel 4-group embedded audio processing card with presets

Standard I/O:

BPH03_HAS30: I/O-panel for HAS30

Fiber outputs:

- BPH03T_FC/PC_HAS30: I/O-panel for HAS30 with fiber transmitter on FC/PC
- BPH03T_SC_HAS30: I/O-panel for HAS30 with fiber transmitter on SC

Fiber inputs:

- BPH03R_FC/PC_HAS30: I/O-panel for HAS30 with fiber receiver on FC/PC
- BPH03R_SC_HAS30: I/O-panel for HAS30 with fiber receiver on SC

HD/SD	SDI	INPUT	(OPTIONAL	FIBER	INPUT)
110/50	501	1141 01	(OI IIONAL	IDLI	1111 01)

RECLOCKED OUTPUT

PROCESSED OUTPUT 1

PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)

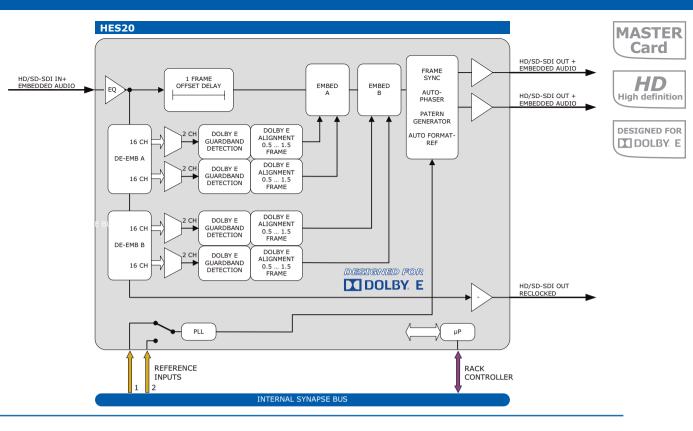
GPI INPUTS (PRESETS)

For fiber connectivity see www.axon.tv

Specifications

HD/SD Seria	l video input	HD serial video output		
Standard	625/50 or 525/59.94 SMPTE	Standard	625/50 or 525/59.94 SMPT	
	259M-C (270Mb/s) with		259M-C (270Mb/s) with	
	SMPTE 272M embedded audio		SMPTE 272M embedded aud	
	SMPTE 292M (1.5Gb/s),		SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,		SMPTE 260M, SMPTE 274M	
	SMPTE 296M, SMPTE 349M		SMPTE 296M, SMPTE 349M	
	1080i/59.94, 1080i/50,		1080i/59.94, 1080i/50,	
	720p/59.94, 720p/50		720p/59.94, 720p/50	
Equalization	Automatic to 100m	Signal level	800mV nominal	
	@ 1.5Gb/s with Belden	DC offset	0V ±0.5V	
	1694A or equivalent cable.	Rise and		
Return loss	> 15dB up to 1.5GHz	fall time	200ps nominal for HD, 750	
			nominal for SD	
		Overshoot	< 10% of amplitude	

625/50 or 525/59.94 SMPTE
259M-C (270Mb/s) with
SMPTE 272M embedded audio
SMPTE 292M (1.5Gb/s),
SMPTE 260M, SMPTE 274M,
SMPTE 296M, SMPTE 349M
1080i/59.94, 1080i/50,
720p/59.94, 720p/50
800mV nominal
0V ±0.5V
200ps nominal for HD, 750ps
nominal for SD
< 10% of amplitude
> 15dB up to 1.0Gb/s,
> 10dB up to 1.5Gb/s
< 0.2UI


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	7 Watts

HES20 HD/SD embedded Dolby E alignment engine / frame synchronizer

The HES20 is a Dolby-E aligner + frame synchronizer. The use of Dolby E in modern SD and HD SDI embedded infrastructures becomes more and more common. Dolby E has a guard-band that ideally sits exactly on top of the frame boundaries of the SDI video stream. Unfortunately this is not always the case. Individual audio and video propagation delay problems can cause a time shift of the Dolby E stream with respect to the SDI carrier, even when it is embedded. A common cause is an MPEG encoder – decoder configuration in a contribution environment. The shift in guard-band removes the feature within Dolby E to drop or rewrite a videoframe without audible clicks. Beside the compression this is one of the main reasons Dolby E is used.

The HES20 is the answer to this problem. The card automatically detects Dolby E and a possible offset of the guard band is measured. Any offset of up to +/- 0.5 Frame will be corrected automatically by delaying the Dolby E between 0.5 and 1.5 frame (The video part of the SDI stream is delayed by one frame as default). A free selection of four stereo pairs, out of the full embedded audio domain can be chosen. If a PCM channel is detected it will get an automatic offset delay of 1 Frame, equal to the video delay.

- Automatic Dolby E alignment of up to 4 embedded Dolby E streams
- Individual offset delay for each Dolby E track -10 to + 10 lines
- Automatic detection of Dolby E versus PCM

- Full functioning Frame synchronizer allows for a-synchronous operation
- Compatible with the following standards:
- 1080i-59.94
- 1080i-50
- 1080p-25720p-50
- 1035i-59.94SD525
- 720p-60 ■ SD625

1080p-30

- Synchronize, delay and free-run modes
- ATC transparency acc. RP188, RP196, RP215
- Locks to Bi and Tri level syncs
- Offset H and V adjustment
 - Up to 2199 pixels H
 - Up to 1124 lines V
- Manual Freeze
- GPI Freeze
- OSD identity text
- I/O measurement propagation delay
- Built-in Proc-amp with individual controls for Y, Cr, Cb, Y-Black, Cb-Black, Cr-Black
- Line lock mode for better auto-phasing
- Audio format detection (e.g. AC3, Dolby E and PCM)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

HES20

4

 \mathbf{O}

 \bigcirc

0

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

BPH01

Applications

- Post MPEG transport embedded Dolby E alignment and synchronization
- Post server Dolby E alignment
- Contribution network embedded Dolby E alignment

Ordering information

Module:

HES20: HD/SD embedded Dolby E alignment engine / Frame synchronizer

Standard I/O:

BPH01_HES20: I/O panel for HES20

Fiber output:

- BPH01T_FC/PC_HES20: I/O panel for HES20 with fiber transmitter on FC/PC
- BPH01T_SC_HES20: I/O panel for HES20 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HES20: I/O panel for HES20 with fiber receiver on FC/PC
- BPH01R_SC_HES20: I/O panel for HES20 with fiber receiver on SC

HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)

HD/SD-SDI RECLOCKED OUTPUT

HD SDI PROCESSED OSD OUTPUT 1

HD SDI PROCESSED OSD OUTPUT 2 (OPTIONAL FIBER OUTPUT)

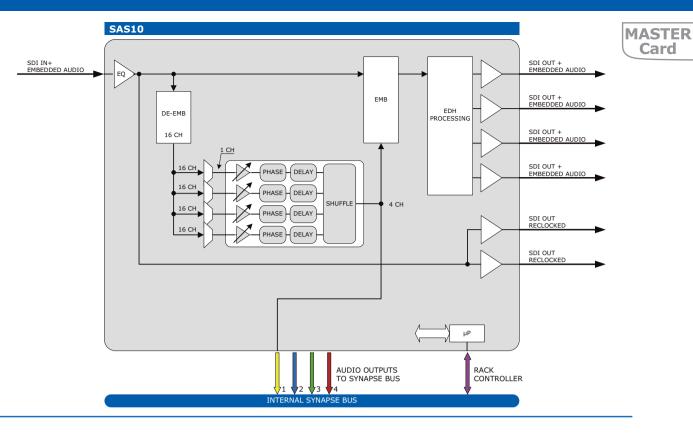
FREEZE INPUT

For fiber connectivity see www.axon.tv

Specifications

-	l video input	Return loss	>
Standard	625/50 or 525/59.94 SMPTE		>
	259M-C (270Mb/s) with	Wideband jitter	<
	SMPTE 272M embedded audio		
	SMPTE 292M (1.5Gb/s),	Reference vid	eo
	SMPTE 260M, SMPTE 274M,	Standard	Ρ
	SMPTE 296M, SMPTE 349M		Ν
	1080i/59.94, 1080i/50,	Number of	
	720p/59.94, 720p/50	inputs	2
Equalization	Automatic to 100m		1
	@ 1.5Gb/s with Belden	Connector	В
	1694A or equivalent cable.	Signal level	1
Return loss	> 15dB up to 1.5GHz	Impedance	F
			f
HD serial vid	eo output	Return loss	>
Standard	625/50 or 525/59.94 SMPTE		
	259M-C (270Mb/s) with	Miscellaneous	
	SMPTE 272M embedded audio	Weight	
	SMPTE 292M (1.5Gb/s),	- ··	А
	SMPTE 292M (1.5GD/S),	Operating	Д
	SMPTE 292M (1.5GD/s), SMPTE 260M, SMPTE 274M,	Operating temperature	
			0
	SMPTE 260M, SMPTE 274M,	temperature	0
	SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M	temperature	0
Signal level	SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50,	temperature Dimensions	0
	SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50	temperature Dimensions Electrical	0
DC offset	SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal	temperature Dimensions Electrical Voltage	0
DC offset Rise and	SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal	temperature Dimensions Electrical Voltage	0
DC offset Rise and	SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal 0V ±0.5V	temperature Dimensions Electrical Voltage	0
Signal level DC offset Rise and fall time Overshoot	SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal 0V ±0.5V 200ps nominal for HD, 750ps	temperature Dimensions Electrical Voltage	A 0 1 + 9

	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
er	< 0.2UI


o input

Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04,
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz

Weight	Approx. 250g	
Operating		
temperature	0 °C to +50 °C	
Dimensions	137 x 296 x 20 mm (HxWxD)	

Voltage	+24V to +30V
Power	9 Watts

HES20

SAS10 SD 4 channel into one group embedded audio shuffler/mixer

The SAS10 is a SD-SDI embedded 4-channel audio shuffler. The SAS10 accept an incoming SDI stream with embedded audio, de-embeds the audio and relocates (shuffles) the audio channels as required by the user. Each audio channel can be selected as one out of 16. The channels can be individual processed before mixing and swapping. The control items are gain, phase and delay.

- Free selection of all 16 channels, and re-insert these channels in a free selectable group.
- Individual audio gain (0.25dB steps) and phase (0-180 deg) per channel
- Full 4 channel mixing and swapping
- Delay 2600ms max for each independent channel.
- Audio peak detection
- Peak reference 0, -6,-12, -18dBFS
- Processed (shuffled/mixed) result is available on ADD-ON bus to be monitored with DAC20 or DAS24
- EDH processing
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

elay bypass

A

Applications

Ingest audio channel correction

Ordering information

Module:

SAS10: 4 channel into one group embedded audio shuffler/mixer

Standard I/O:

BPL01_SAS10: I/O panel for SAS10

BPX01_SAS10: I/O panel for SAS10 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_SAS10: I/O panel for SAS10 with fiber transmitter on FC/PC
- BPL01T_SC_SAS10: I/O panel for SAS10 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_SAS10: I/O panel for SAS10 with fiber receiver on FC/PC
- BPL01R_SC_SAS10: I/O panel for SAS10 with fiber receiver on SC

CVBS output:

BPL01C_SAS10: I/O panel for SAS10 with CVBS output

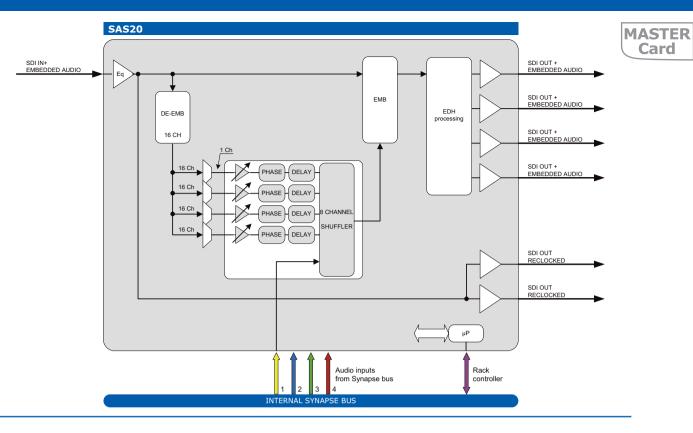
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc
SDI RECLOCKED OUTPUT 1	\bigcirc	\bigcirc
SDI RECLOCKED OUTPUT 2	\bigcirc	\odot
SDI PROCESSED OUTPUT 1 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	\odot
SDI PROCESSED OUTPUT 2	\bigcirc	\bigcirc
SDI PROCESSED OUTPUT 3	\bigcirc	\bigcirc
SDI PROCESSED OUTPUT 4	\bigcirc	\bigcirc
	\bigcirc	\bigcirc
	\bigcirc	\bigcirc
	€	•
For fiber connectivity see www.axon.tv	BPL01	BPX01

For fiber connectivity see www.axon.tv

Specifications

Serial video input			
Standard	625/50 or 525/59.94 SMPTE		
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio		
Number of			
inputs	1		
Equalization	Automatic to 300m		
	@ 270Mb/s with Belden		
	1694A or equivalent cable		
Return loss > 15dB up to 270MHz			

SD serial video output


Standard	625/50 or 525/59.94 SMPTE		
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio		
Number of			
outputs	4		
Signal level	800mV nominal		
DC offset	0V ±0.5V		
Rise/fall time	800ps nominal		
Overshoot	< 10% of amplitude		
Return loss	> 15dB up to 270MHz		

Miscellaneous Weight Approx. 250g Operating temperature 0 °C to +50 °C Dimensions 137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<6 Watts

SAS20 SD 8 channel into one group embedded audio + ADD-ON input shuffler/mixer

The SAS20 is a SD-SDI embedded 8-channel audio shuffler. The SAS20 accepts an incoming SDI stream with embedded audio, de-embeds the audio and relocates (shuffles) and combines the audio channels with 4 channels that can be sourced by an ADD-ON card as the ADC20/24 and DIO24. Each local audio channel can be selected as one out of 16. The local channels can be individual processed before mixing and swapping. The control items are gain, phase and delay. The ADD-ON channels can be processed before mixing on the ADD-ON card.

- Free selection of all 16 channels + 4 ADD-ON channels and re-insert these channels in a free selectable group.
- Individual local audio gain (0.25dB steps) and phase (0-180 deg) per channel
- Full 8 channel mixing and swapping into one group (4 channels)
- Delay 2600ms max for each local channel.
- Audio peak detection
- Peak reference 0, -6,-12, -18dBFS
- EDH processing and generation
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

BPX01

BPL01

elay bypas:

Applications

 Correction of embedded audio channels by combining local and external audio channels

Ordering information

Module:

SAS20: 8 channel into one group embedded audio + ADD-ON input shuffler/ mixer

Standard I/O:

BPL01_SAS20: I/O panel for SAS20

BPX01_SAS20: I/O panel for SAS20 with relay bypass

Fiber outputs:

BPL01T_FC/PC_SAS20: I/O panel for SAS20 with fiber transmitter on FC/PC

BPL01T_SC_SAS20: I/O panel for SAS20 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_SAS20: I/O panel for SAS20 with fiber receiver on FC/PC
- BPL01R_SC_SAS20: I/O panel for SAS20 with fiber receiver on SC

CVBS output:

BPL01C_SAS20: I/O panel for SAS20 with CVBS output

	€	€
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	
SDI RECLOCKED OUTPUT 1	\bigcirc	\odot
SDI RECLOCKED OUTPUT 2	\bigcirc	\odot
SDI PROCESSED OUTPUT 1 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	
SDI PROCESSED OUTPUT 2	\bigcirc	Ó
SDI PROCESSED OUTPUT 3	\bigcirc	\odot
SDI PROCESSED OUTPUT 4	\bigcirc	O
	\bigcirc	0
	\bigcirc	\bigcirc
	e	•

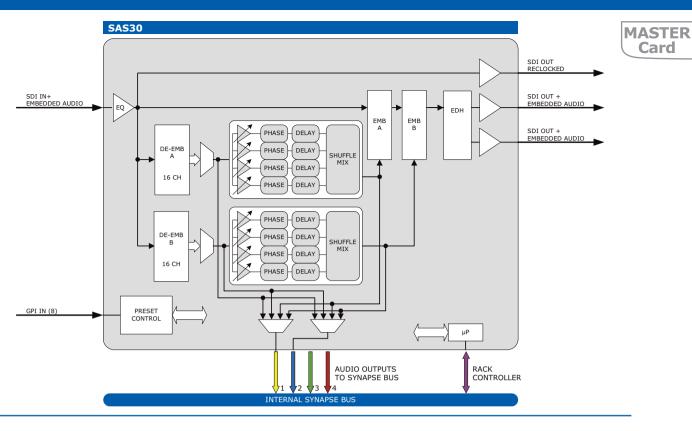
For fiber connectivity see www.axon.tv

Specifications

Serial video input Standard 625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio Number of inputs 1 Equalization Automatic to 300m @ 270Mb/s with Belden 1694A or equivalent cable > 15dB up to 270MHz **Return loss**

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	4
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz


Miscellaneous Weight Approx. 250g Operating temperature 0 °C to +50 °C Dimensions 137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<6 Watts

SAS20

SAS30 SD 2 group GPI (preset) triggered SDI embedded audio shuffler

The SAS30 is an 8-channel in 2 group preset based SDI embedded audio shuffler/mixer. AXON is the first in the industry to offer this comprehensive card, and puts full 8 channel audio control power in to the hands of an SDI embedded signal user. Individual gain, phase and delay control for each channel are also part of this powerful card. The preset based control of this card makes it ideal for repeated corrections or standard channel swapping in a multi-lingual environment. If dynamic control is required the card can still perform this task as every preset is remote controllable by a third party control protocol or our dedicated SCP08 control panel.

- SD-SDI compatible (functional equivalent to HD capable HAS10)
- 8-channel selection (any out of 16)
- 8 presets (GPI or ACP controlled)
- Pre and post monitoring with ADD-ON card
- Audio input gain (0.25dB steps)
- Audio input phase (0 180 deg)
- Audio input delay offset
- EDH detection and generation
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O-panel

Applications

 Preset based 2 group audio shuffling/mixing

Ordering information

Module:

 SAS30: 2 group GPI (preset) triggered SDI embedded audio shuffler

Standard I/O:

- BPL01_SAS30:
 I/O panel for SAS30
- BPX01_SAS30:
 I/O panel for SAS30 with backup bypass loop

BPX03_SAS30: I/O panel for SAS30 with CDL is and astronomy CDL

GPI in and output on GPI, with backup bypass loop

Fiber outputs:

 BPL01T_FC/PC_SAS30:
 I/O panel for SAS30 with fiber transmitter on FC/PC

 BPL01T_SC_SAS30:
 I/O panel for SAS30 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_SAS30:
 I/O panel for SAS30 with fiber receiver on FC/PC
- BPL01R_SC_SAS30:
 I/O panel for SAS30 with fiber receiver on SC

CVBS output:

BPL01C_SAS30:

I/O panel for SAS30 with one CVBS output

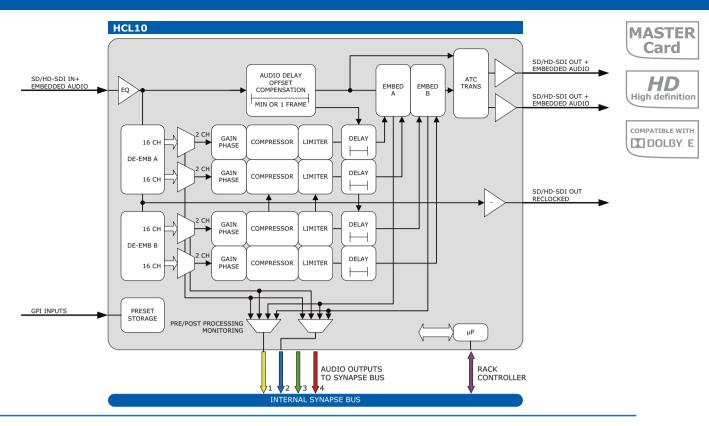
	- +		↔
SDI INPUT (OPTIONAL FIBER INPUT)	Ó	0	
SDI RECLOCKED OUTPUT	\bigcirc		relay bypass
SDI PROCESSED OUTPUT 1	Ô	O	relay t
SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OR CVBS OUTPUT)	\odot	0	O
	\odot	0	Ô
	\odot	0	Ô
	\odot	0	Ô
GPI INPUT/OUTPUT (BPX03 ONLY)	\bigcirc	\bigcirc	
	\bigcirc	\bigcirc	₩
	{}	{	e
For fiber connectivity see www.axon.tv	BPL01	BPX01	BPX03

Specifications

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	
Return loss	> 15dB up to 270MHz	

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	3 (one reclocked)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz


MiscellaneousWeightApprox. 250gOperatingtemperature0 °C to +50 °CDimensions137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<9 Watts

elay bypas:

HCL10 HD/SD embedded audio compressor/limiter

The HCL10 is a high quality preset based 8 channels HD/SD embedded audio compressor/limiter. The card is able to compress and limit 8 channels and insert them in to 2 groups of embedded audio. Main features are:

- Free selection of any 8 channels out of all 16 channels
- Input Gain and Phase control
- Adjustable Video offset delay to minimum (approx. 2.5 ms) or 1 frame
- Preset control of audio processing parameters for all 6 presets include:
 - User defined preset label of 16 characters
 - Bypass for non PCM on stereo pairs
 - Bypass of Compressor or Limiter on stereo pairs
 - Channel link:
 - Multi mono
 - Dual Stereo
 - Quad
 - All 8 channels
 - 2+6
 - 6+2

- Threshold
- -80 dBFS to 0 dBFS
- Compression ratio
- 1:1 to 15:1 in 0.1 increments
- Compressor Attack adjustment
 - 1 to 500ms
- Compressor release adjustment10 to 5000ms
- Compressor Knee adjustment
 - Hard
 - Medium
 - Soft
 - Tube-Soft
- Compressor Level detection
 - Peak
 - RMS
- Compressor Makeup gain
- -60 dB to +12 dB
- Limit Threshold adjustment
 - -60 dBFS to 0dBFS
- Limit Knee adjustment
- Hard
- Medium
- Soft
- Tube-Soft
- Limit release adjust
- 100 to 5000 ms

- Limit output gain
- -60dB to +12dB
- Level meters & reduction meters (in status menu)
 - Off
 - Input Limiter
 - Output Limiter
 - Compressor + limiter
- Pre and post processor monitoring via Synapse ADD-ON card
- Full status information of the video and all embedded audio parameters.
- Audio format detection (e.g. AC3, Dolby E and PCM)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

HCL10

4

Ó

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ô

 \bigcirc

BPH03

Applications

The primary application of the HCL10 will be seen in output stages of the transmission chain. The card can be used next to a video legalizer, a truck output and all transmission outputs.

The HCL10 will "legalize" all leaving audio content to predefined audio parameters that can be recalled in presets. Another application is seen as an ingest compressor limiter.

Ordering information

Module:

HCL10: HD/SD embedded audio compressor/limiter

Standard I/O:

BPH03_HCL10: I/O-panel for HCL10 with GPI I/O on sub-D

Fiber outputs:

- BPH03T_FC/PC_HCL10: I/O-panel for HCL10 with fiber transmitter on FC/PC
- BPH03T_SC_HCL10: I/O-panel for HCL10 with fiber transmitter on SC

Fiber inputs:

- BPH03R_FC/PC_HCL10: I/O-panel for HCL10 with fiber receiver on FC/PC
- BPH03R_SC_HCL10: I/O-panel for HCL10 with fiber receiver on SC

HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)
HD/SD-SDI RECLOCKED OUTPUT
HD/SD-SDI RECLOCKED OUTPUT
HD/SD-SDI PROC. OUTPUT (OPTIONAL FIBER OUTPUT)
GPI INPUT/OUTPUT

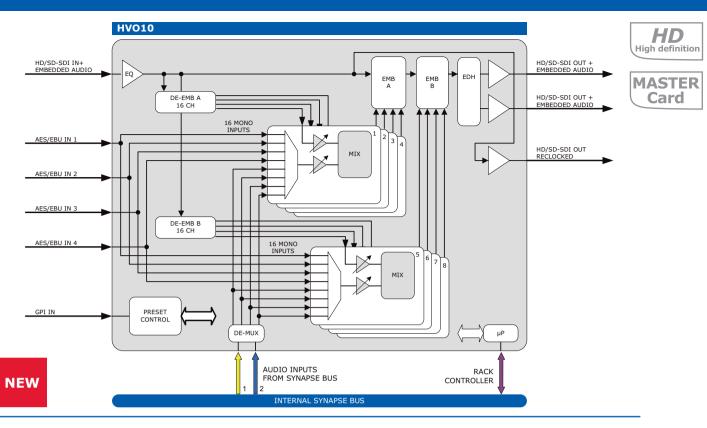
For fiber connectivity see www.axon.tv

Specifications

HD/SD Serial video input		HD serial video output	
Standard	625/50 or 525/59.94 SMPTE	Standard	625/50 or 525/59.94 SM
	259M-C (270Mb/s) with		259M-C (270Mb/s) with
	SMPTE 272M embedded audio		SMPTE 272M embedded a
	SMPTE 292M (1.5Gb/s),		SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,		SMPTE 260M, SMPTE 274
	SMPTE 296M, SMPTE 349M		SMPTE 296M, SMPTE 349
	1080i/59.94, 1080i/50,		1080i/59.94, 1080i/50,
	720p/59.94, 720p/50		720p/59.94, 720p/50
Equalization	Automatic to 100m	Signal level	800mV nominal
	@ 1.5Gb/s with Belden	DC offset	0V ±0.5V
	1694A or equivalent cable.	Rise and	
Return loss	> 15dB up to 1.5GHz	fall time	200ps nominal for HD, 7
			nominal for SD
		Overshoot	< 10% of amplitude
		Return loss	> 15dB up to 1.0Gb/s,

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
	SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,
	720p/59.94, 720p/50
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise and	
fall time	200ps nominal for HD, 750ps
	nominal for SD
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
Wideband jitter	< 0.2UI

Miscellaneous


Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts

HVO10 HD/SD Voice Over inserter/embedder

The HVO10 is an 8-channel in 2-group preset-based HD embedded audio shuffler/mixer/Voice over card. AXON is again an industry first with this powerful card, and puts full audio mixing and shuffling control power into the hands of an HD embedded signal user. The preset-based control of this card makes it ideal for repeated corrections. If dynamic control is required the card can still perform this task as every preset is remote controllable by a third party control protocol or the dedicated control panel SCP08.

- MIX one embedded channel with one external channel (times 8 into 2 groups)
- 8 presets
- ADD dialog levels in mixing calculation
- 4 local AES/EBU inputs (8 Mono)
- 4 ADD-ON inputs (8 Mono)
- HD-SDI and SD-SDI compatible
- Control objects per channel are:
- Embedded audio Gain (1 dB steps)
- External audio gain (1 dB steps)
- Mixing fade time (100-10,000ms)
- Overwrite and append modes
- Transparent for ATC time code RP188, RP196, RP215
- Transparent for Dolby-E; processing bypassed
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Applications

- Multi channel voice over card
- MCR audio shuffling/mixing and swapping

Ordering information Module:

 HV010: HD/SD 8 channel
 2 group embedded audio processing card with local AES/EBU inputs

Standard I/O:

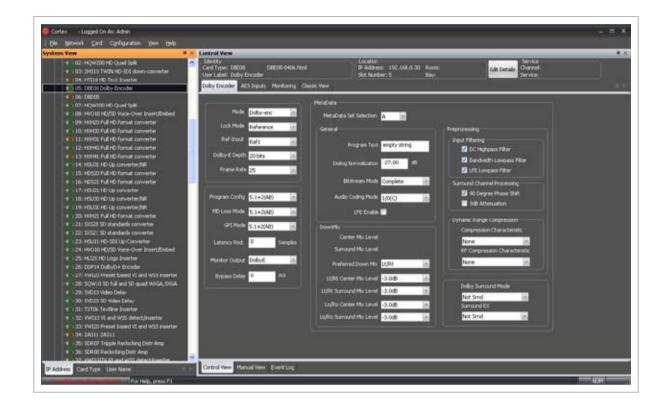
- BPH01_HV010: I/O panel for HVO10 with unbalanced AES/EBU out
- BPH02_HVO10:
 I/O for HVO10 with balanced
 AES/EBU out
- BPH02D_HV010: I/O panel for HVO10 with balanced AES/EBU out on sub-D

Fiber outputs:

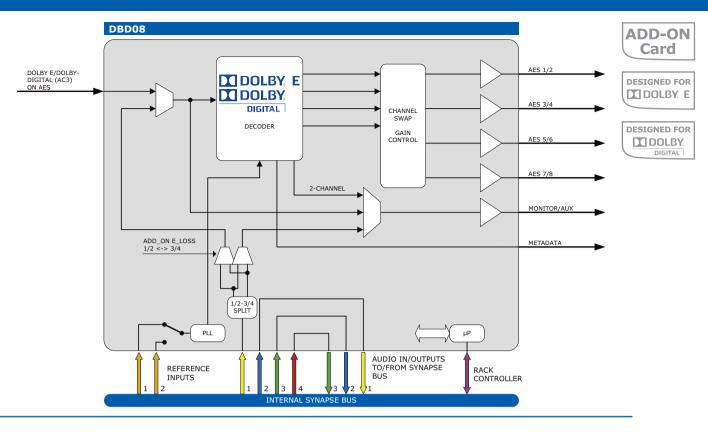
- BPH01T_FC/PC_HV010:
 I/O panel for HV010 with fiber transmitter on FC/PC
- BPH01T_SC_HVO10:
 I/O panel for HVO10 with fiber transmitter on SC
- BPH02T_FC/PC_HV010: I/O panel for HV010 with fiber transmitter on FC/PC
- BPH02T_SC_HV010: I/O panel for HVO10 with fiber transmitter on SC
- BPH02DT_FC/PC_HV010:
 I/O panel for HV010 with
 fiber transmitter on FC/PC
- BPH02DT_SC_HV010: I/O panel for HVO10 with fiber transmitter on SC

Fiber inputs:


- BPH01R_FC/PC_HV010:
 I/O panel for HV010 with fiber receiver on FC/PC
- BPH01R_SC_HV010: I/O panel for HV010 with fiber receiver on SC
- BPH02R_FC/PC_HV010:
 I/O panel for HVO10 with fiber receiver on FC/PC
- BPH02R_SC_HV010:
 I/O panel for HV010 with fiber receiver on SC
- BPH02DR_FC/PC_HV010:
 I/O panel for HV010 with fiber receiver on FC/PC
- BPH02DR_SC_HV010:
 I/O panel for HV010 with fiber receiver on SC


	(*)		
HD/SD SDI INPUT (OPTIONAL FIBER INPUT)	Ó	Ô	0
HD/SD SDI RECLOCKED OUTPUT	\bigcirc	Ô	\bigcirc
HD/SD SDI PROCESSED OUTPUT 1	\bigcirc	O	
HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	0	
	\bigcirc		\odot
AES/EBU INPUT 1	\bigcirc		®
AES/EBU INPUT 2	\bigcirc		
AES/EBU INPUT 3	\bigcirc		
AES/EBU INPUT 4	\bigcirc		
	\bigcirc	₽	Ð
	BPH01	BPH02	BPH02D

Specifications


HD/SD seria	l video input	Return loss	> 15dB up to 1.0Gb/s,
Standard	625/50 or 525/59.94 SMPTE		> 10dB up to 1.5Gb/s
	259M-C (270Mb/s) with	Wideband jitter	< 0.2UI
	SMPTE 272M embedded audio		
	SMPTE 292M (1.5Gb/s),	AES audio inp	ut
	SMPTE 260M, SMPTE 274M,	Connector	BNC, Screw terminal or 25
	SMPTE 296M, SMPTE 349M		pins female sub-D (balanced)
	1080i/59.94, 1080i/50,	Standard	AES-1992 for balanced syn-
	720p/59.94, 720p/50		chronous or asynchronous
Number of inpu	its 3		PCM/AES, SMPTE 276M for
Equalization	Automatic to 100m @		single ended synchronous or
	1.5Gb/s with Belden 1694A		asynchronous PCM/AES
	or equivalent cable.	Number of inputs	; 4
Return loss	> 15dB up to 1.5GHz	Sampling rate	32 kHz to 96 kHz A-Synchro-
			nous via SRC and 48 kHz
HD serial video output			Synchronous in transparent
Standard	625/50 or 525/59.94 SMPTE		mode (Dolby E)
	259M-C (270Mb/s) with	Resolution	24 bits in HD, 20 bits in SD
	SMPTE 272M embedded audio	Minimum input/	
	SMPTE 292M (1.5Gb/s),	output delay	1 ms
	SMPTE 260M, SMPTE 274M,	Impedance	110 Ohms or 75 Ohms
	SMPTE 296M, SMPTE 349M	Level	0.2V to 1V nom for BNC, 2V
	1080i/59.94, 1080i/50,		to 7V for balanced operation
	720p/59.94, 720p/50		
Number of		Miscellaneous	
outputs	3 (1 reclocked and	Weight	Approx. 250g
	2 processed)	Operating	
Signal level	800mV nominal	temperature	0 °C to +50 °C
DC offset	0V ±0.5V	Dimensions	137 x 296 x 20 mm (HxWxD)
Rise and			
fall time	200ps nominal for HD, 750ps	Electrical	
	nominal for SD	Voltage	+24V to +30V
Overshoot	< 10% of amplitude	Power	<8 Watts

DBD08 - DBE08 - DDP14: Uses the Dolby terminology for the settings rather than the limited Synapse ACP label. On/Off options use checkbox rather than drop drown.

DBD08 Dolby E and Dolby Digital Decoder stand alone or ADD-ON card

The DBD08 is a fully compliant Dolby E decoder. Dolby E is designed to transport multichannel audio (discrete 5.1 surround Dolby Digital) in a broadcast environment. The DBD08 decodes up to 8 channels of high quality audio plus Dolby digital metadata from a single AES pair. Fundamental to the operation of Dolby E is the synchronization of audio with video, in order to provide an exact match between encoded Dolby E audio frames and video frames Dolby E requires synchronization to a video signal. All Dolby E encoders and decoders must have either a direct reference video signal, or derive the information from a video reference signal. The DBD08 can also be used as a Dolby Digital (AC3) surround sound decoder.

- Independent Dolby E decoder
- Compatible with Dolby Digital (AC3)
- Monitor output can be used for Dolby E, PCM from channel 3/4 of bus
- ADD-ON Dolby E decoder with DBD10 or HDD10 for the de-embedding function, including before and after delay de-embedding for PCM and E data
- 8 channels on 75 Ohms BNC (4xAES/EBU)
- Output channel swapping
- Audio output gain and phase control
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Complementary cards:

- DBE08, DDE51
- HDD10

- OB Van Dolby E decoder when space, hot swap ability, SNMP, or redundant supply is important
- 18 decoders in 4 RU
- Dolby E decoding in trucks, studios and contribution sites.

Ordering information

Module:

 DBD08: Dolby E and Dolby Digital Decoder stand alone or ADD-ON

Standard I/O:

BPL08_DBD08:
 I/O panel for DBD08

	(†)
DOLBY E, DOLBY DIGITAL (BIT-STREAM) INPUT	0
AES/EBU 1/2 OUTPUT	0
AES/EBU 3/4 OUTPUT	0
AES/EBU 5/6 OUTPUT	0
AES/EBU 7/8 OUTPUT	0
MONITOR/AUX OUTPUT	0
	0
	(
META-DATA OUTPUT	••••••••••••••••••••••••••••••••••••••

BPL08

Specifications

AES audio output

5

BNC

24 bits

1 Frame

ADD-ON bus

48KHz synchronous

Number of outputs

Connector

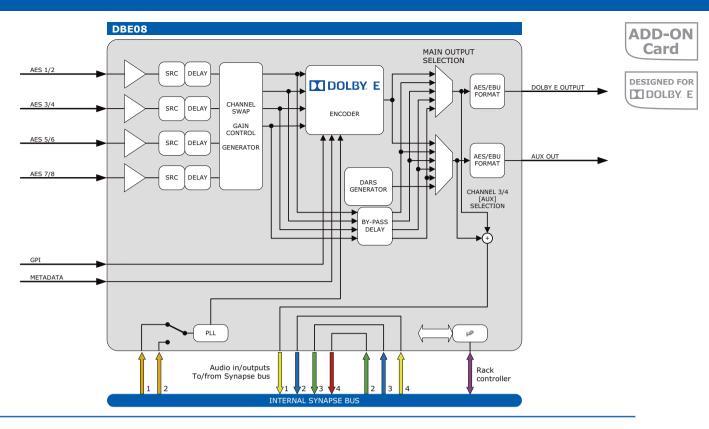
Resolution

Nominal input/output

delay

Sampling rate

AES audio input (Dolby E) BNC or ADD-ON bus Connector Standard SMPTE 276M for single ended synchronous or asynchronous PCM/AES Number of inputs 1 Sampling rate 48 kHz Synchronous Resolution NA Minimum Input/output delay 1 Frame Impedance 75 Ohms Level 0.2V to 1V nom


Miscellaneous Weight Approx. 250g Operating temperature 0 °C to +50 °C Dimensions 137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<5 Watts

audio for video

DBE08 Dolby E Encoder stand alone or ADD-ON card

The DBE08 is a stand-alone Dolby E encoder. Although it is not a complete replacement for the DP571 from Dolby Laboratories, it can be considered as a functional equivalent. The advantages however are the facts that the DBE08 is modular, can run on a dual power supply, Ethernet and SNMP compatible, and has a nice enhancement to the menu structure. This last item is an interesting feature. The DBE08 can handle 8 presets with metadata (A through H) and 10 presets of different program combinations. The often used program combinations like 5.1+2 are available with 4 times the individual metadata sets. This will result in the possibility to have 4 times the program combination 5.1+2, but with 8 different metadata settings.

- Stand alone Dolby E encoder
- Fully compatible with Audio ADD-ON bus
- 20 bit mode for 8 channels, 16 bit mode for 6 channels encoding
- 4 presets 5.1+2 (with 8 different metadata sets)
- 4 presets 2+2 (with 8 different metadata sets)
- 2 presets 2+2+2+2 (with 8 different metadata sets)
- Metadata settings for:
 - Program text (16 character text)
 - Dialog level
 - Bit-stream identification
 - Dynamic range (film, music, speech, etc.)

- RF mode Dynamic range (11 dB more sensitive)
- Center downmix level
- Surround downmix level
- Dolby surround
- Preferred downmix
- Lt/Rt Center and Surround downmix level
- Lo/Ro Center and Surround downmix level
- Surround-EX flag
- DC filter
- LFE filter
- Low-pass filter
- Surround 3dB attenuation
- Surround phase shift
- Input channel swapping (any channel to any encoder input)
- Individual gain and phase adjustment per mono channel
- Individual delay offset adjustment (0 to 1300 ms)
- Built-in generator
- One selectable AES/EBU bypass input with additional delay settings

Complementary cards:

- DBD08, DDE51
- SDE10, HDE10

Applications

- OB van Dolby E encoder when space, hot swap ability, SNMP, or redundant supply is important
- 18 encoders in 4 RU
- Dolby E encoding in trucks, studios and contribution sites.

Ordering information

Module:

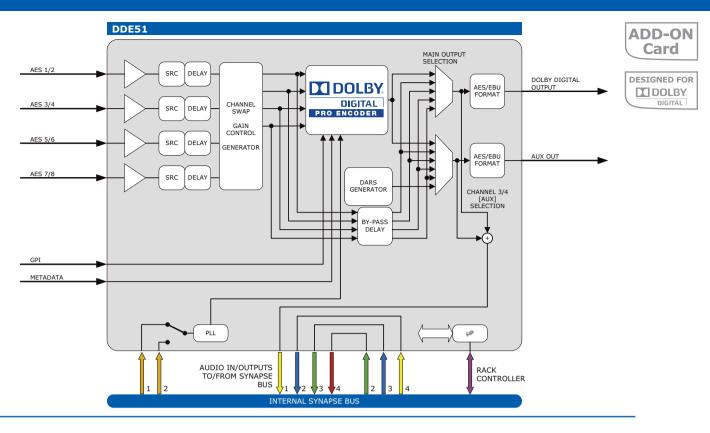
DBE08: Dolby E Encoder stand alone or ADD-ON

Standard I/O:

BPL08_DBE08:

I/O panel for DBE08

DOLBY E (BIT-STREAM) OUTPUT	\bigcirc
AES/EBU 1/2 INPUT	\bigcirc
AES/EBU 3/4 INPUT	0
AES/EBU 5/6 INPUT	0
AES/EBU 7/8 INPUT	0
AUXILARY OUTPUT	0
GPI INPUT	\bigcirc
	(
META-DATA INPUT	() () () () () () () () () () () () () (


BPL08

Specifications

AES audio input		GPI		
Connector	BNC	Connector	BNC	
Standard	SMPTE 276M for single		Contact closure +5V	
	ended synchronous or	Number of		
	asynchronous PCM/AES	inputs	1	
Number of				
inputs	4	Meta-Data Input		
Sampling rate 32 kHz to 96 kHz asynchronou		Connector	9 pins female sub-D	
Resolution	24 bits			
Minimum		Miscellaneou	IS	
Input/output		Weight	Approx. 250g	
delay	1 Frame	Operating		
Impedance	75 Ohms	temperature	0 °C to +50 °C	
Level	0.2V to 1V nom for BNC	Dimensions	137 x 296 x 20 mm (HxWxD)	
AES audio out	tput (Dolby E)	Electrical		

Number of	
outputs	2
Connector	BNC
	ADD-ON bus
Resolution	NA
Sampling rate	48KHz synchronous
Nominal	
input/output	
delay	1 Frame

Voltage	+24V to +30V
Power	<6 Watts

DDE51 Dolby Digital Pro encoder

The DDE51 was at introduction the first modular Dolby Digital Pro encoder in the world. Targeted at transmission environments the DDE51 has all the advantages of the Synapse system, such as hot swap ability, redundant power supplies, SNMP compatibility and a host of other modular solutions that fit the same chassis. The DDE51 is a functional equivalent to the DP569 from Dolby Laboratories.

- Preset based meta-data insertion
- Dolby Digital encoding or bypass mode (individual for both outputs)
- Adjustable encoding data rate (56 kb/s to 640 kb, part of 8 presets)
- Full 8 channel independent input selection
- Built-in generator per mono channel
- Input gain control per individual mono channel
- Input phase control per individual mono channel
- Input offset delay for phase compensation (0 to 1300 ms in 1 ms intervals)
- Auxiliary output can source a second AC3 stream or a copy of each input
- Up to 18 AC3 pro encoders in 4RU
- Metadata input
- 5.1, 4.0, 3.1, 3.0, 2.0, 1.0 modes
- GPI triggered preset
- Status information of each input (including clipping)
- Encoder OK status reporting
- AES/EBU in and outputs on 75 Ohms BNC according to AES3ID-1995
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18

Note: The latency of the DDE51 has been 200ms, but has recently decreased to 166ms with latest firmware updates. In the future the latency will be user definable in the menu of the card.

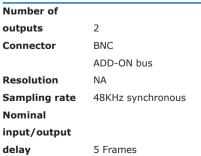
 Transmission Dolby Digital Encoding

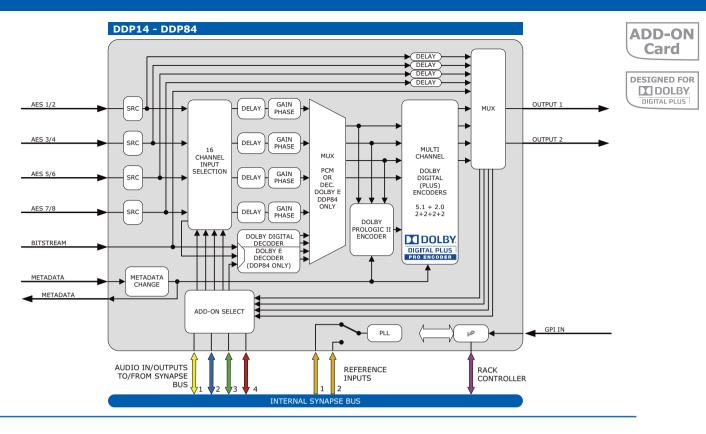
Ordering information

Module:

 DDE51: Dolby Digital Pro encoder

Standard I/O:


BPL08_DDE51:
 I/O-panel for DDE51


DOLBY DIGITAL (BIT-STREAM) OUTPUT	0
AES/EBU 1/2 INPUT	0
AES/EBU 3/4 INPUT	\bigcirc
AES/EBU 5/6 INPUT	0
AES/EBU 7/8 INPUT	0
AUXILARY OUTPUT	0
GPI INPUT	0
	(
META-DATA INPUT	8

BPL08

Specifications

AES audio input		GPI		
Connector	BNC	Connector	BNC	
Standard	SMPTE 276M for single	Number of		
	ended synchronous or	inputs	1	
	asynchronous PCM/AES			
Number of		Meta-Data Input		
inputs	4	Connector	15 pins female sub-D	
Sampling rate	32 kHz to 96 kHz			
	asynchronous	Miscellaneou	IS	
Resolution	24 bits	Weight	Approx. 250g	
Minimum		Operating		
Input/output		temperature	0 °C to +50 °C	
delay	163ms	Dimensions	137 x 296 x 20 mm (HxWxD)	
Impedance	75 Ohms			
Level	0.2V to 1V nom	Electrical		
		Voltage	+24V to +30V	
AES audio output (Dolby Digital)		Power	<6 Watts	
Number of		-		

DDP14 - DDP84 Multi stream Dolby Digital Plus and Pro encoder with Dolby E decoder (DDP84 only)

Dolby Laboratories, with Dolby Digital Plus, is targeting at the next generation of digital transmission and optical formats. The advantage of Dolby Digital Plus is a channel count of up to 7.1 (13.1 in the future) and bit rates of about 50 percent of normal Dolby Digital.

An important application is the transcoding of normal Dolby Digital to Dolby Digital plus for cable head-ends. This gives a data rate reduction of 50% for the audio path. The DDP84 includes a Dolby E decoder. This enables the decoding of Dolby E and encoding that into Dolby Digital (plus) with only one Synapse card.

The calculation power of the DDP14/84 make a simultaneous encoding of 4 individual stereo channels (languages) to 4 Dolby Digital (Plus) 2.0 streams possible.

The DDP14/84 is a stand alone Dolby Digital Plus encoder. It will support the following encoding algorithms:

- Up to 4 times 2.0 Dolby Digital (Plus) outputs.
- 5.1 Dolby Digital (Plus) + 2.0 Dolby Digital (Plus)
- Dolby Pro Logic II
- Individual offset delay per input
- Individual gain control per input (except bitstream input)
- Able to handle all AES/EBU input formats
- Full audio channel shuffling
- Ability to use the Synapse ADD-ON bus for in- and output purposes.
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

The DDP84 will add:

Decoding Dolby E and encoding to Dolby Digital (Plus)

Applications

- Multi channel encoding
- Transcoding of Dolby
 Digital to Dolby Digital Plus
- Multi language encoding, 4 x stereo Dolby Digital (Plus)
- Decoding Dolby E, to encode into Dolby
 Digital (Plus) with one card (DDP84 only)

Ordering information

Module:

- DDP14: Dolby Digital Plus and Pro encoder
- DDP84: Dolby Digital Plus and Pro encoder with Dolby E decoder

Standard I/O:

- BPL08_DDP14: I/O panel for DDP14
- BPL08_DDP84:
 I/O panel for DDP84

AES/EBU 1/2 INPUT
AES/EBU 3/4 INPUT
AES/EBU 5/6 INPUT
AES/EBU 7/8 INPUT
BITSTREAM INPUT (DOLBY DIGITAL (PLUS) OR DOLBY E)
DOLBY DIGITAL (PLUS) OUTPUT 1
DOLBY DIGITAL (PLUS) OUTPUT 2
META-DATA INPUT/OUTPUT AND GPI INPUT

BPL08

Specifications

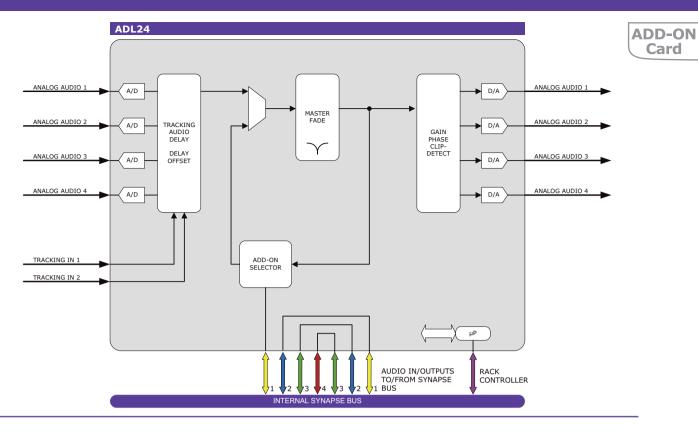
AES audio input

ALS audio inp			
Connector	BNC	Num	
Standard	SMPTE 276M for single	outp	
	ended synchronous or	Conr	
	asynchronous PCM/AES		
Number of		Reso	
inputs	5	Sam	
Sampling rate	32 kHz to 96 kHz	Nom	
	asynchronous	inpu	
	48 kHz synchronous in SRC	dela	
	off mode		
Resolution	24 bits	Misc	
Minimum		Weig	
Input offset		Оре	
delay	0 to 1300 ms	temp	
Input gain		Dime	
control	+12dB to -60 dB		
Gain step size	0.25dB	Elec	
Impedance	75 Ohms	Volta	
Level	0.2V to 1V nom	Pow	

AES audio output (Dolby Digital (Plus) Number of 2 outputs 2 Connector BNC 75 Ohms ADD-ON bus ADD-ON bus Resolution NA Sampling rate 48KHz synchronous Nominal June 1 input/output 200ms

liscellaneous

Weight	Approx. 300g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)


Electrical

Voltage	+24V to +30V
Power	<8 Watts

Encoding (e.g.)

Encoding bitrate:	~200kbps for broadcast
	~800kbps for disc based
	formats
Encoding modes:	5.1 Dolby Digital
	5.1 Dolby Digital plus
	Dolby Surround Pro Logic II
	4 x Dolby Digital plus 2.0
	(multi language)

ADL24 Analog audio tracking delay with offset

The ADL24 is an audio delay card, its main application is to delay analog audio signals. The card has a tracking audio delay and a delay offset ranging from 0 ms up to 5200 ms at 48 kHz. This card can also be used as an ADD-ON card. In ADD-ON mode the card acts as an Analog input or output board that feeds a master card positioned to the left with embedder or de-embedder functionality. For example the SDB20 can perform a de-embedder function with the ADL24 as its output card.

The audio data that enters the synapse bus from a master card is identical to the analog audio on the local outputs. If the ADL24 is used with an SEB20 master card, the ADL24 performs as an Analog input. The ADL24 converts the analog audio digital audio signals and put these on the Synapse bus. The signals can be embedded into the SDI data stream.

- 24 bit audio conversion
- 48, 96 and 192 kHz internal sampling for up to 90kHz analog audio bandwidth
- Sample clock can be derived from Master card (ADD-ON mode).

Card

- Analog reference levels adjustable for +12, +15, +18 and +24dBu
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Can be used as a Synapse ADD-ON card for embedding or de-embedding
- Adjustable audio delay offset up to 5200ms in 1ms increments
- Tracking audio delay
- Master fade function for dedicated Synapse applications
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

- Analog audio tracking delay functions
- Generic analog audio ADD-ON card for dedicated Synapse master cards that have an embedding function. Both in and output options
- Offset delay for compensation of large screen venue displays

Ordering information

Module:

ADL24: Analog audio tracking delay with offset

Standard I/O:

- BPL04_ADL24:
 - I/O panel for ADC24 with balanced analog audio in and balanced analog audio out
- BPL05_ADL24: I/O panel for ADC24 with

balanced analog audio in and balanced analog audio out and tracking on Phoenix

BPL05D_ADL24:

I/O panel for ADC24 with balanced analog audio in and balanced analog audio out and tracking on sub-D

TRACKING INPUT ANALOG AUDIO INPUT 1 ANALOG AUDIO INPUT 2 ANALOG AUDIO INPUT 3 ANALOG AUDIO OUTPUT 1 ANALOG AUDIO OUTPUT 1 ANALOG AUDIO OUTPUT 2 ANALOG AUDIO OUTPUT 3 ANALOG AUDIO OUTPUT 4 ANALOG AUDIO OUTPUT 4 ANALOG AUDIO OUTPUT 3 ANALOG AUDIO OUTPUT 4 ANALOG AUDIO OUTPUT 4 ANALOG AUDIO OUTPUT 4		e	€	e
ANALOG AUDIO INPUT 1 ANALOG AUDIO INPUT 2 ANALOG AUDIO INPUT 3 ANALOG AUDIO OUTPUT 1 ANALOG AUDIO OUTPUT 1 ANALOG AUDIO OUTPUT 2 ANALOG AUDIO OUTPUT 2 ANALOG AUDIO OUTPUT 3 ANALOG AUDIO OUTPUT 4	TRACKING INPUT	0		
ANALOG AUDIO INPUT 2 ANALOG AUDIO INPUT 3 ANALOG AUDIO INPUT 4 ANALOG AUDIO OUTPUT 1 ANALOG AUDIO OUTPUT 2 ANALOG AUDIO OUTPUT 2 ANALOG AUDIO OUTPUT 3 ANALOG AUDIO OUTPUT 4 ANALOG AUDIO OUTPUT 4	ANALOG AUDIO INPUT 1			
ANALOG AUDIO INPUT 4 ANALOG AUDIO OUTPUT 1 ANALOG AUDIO OUTPUT 2 ANALOG AUDIO OUTPUT 3 ANALOG AUDIO OUTPUT 4	ANALOG AUDIO INPUT 2			
ANALOG AUDIO OUTPUT 1 ANALOG AUDIO OUTPUT 2 ANALOG AUDIO OUTPUT 3 ANALOG AUDIO OUTPUT 4	ANALOG AUDIO INPUT 3			
ANALOG AUDIO OUTPUT 2 ANALOG AUDIO OUTPUT 3 ANALOG AUDIO OUTPUT 4	ANALOG AUDIO INPUT 4			
ANALOG AUDIO OUTPUT 3 ANALOG AUDIO OUTPUT 4	ANALOG AUDIO OUTPUT 1			
ANALOG AUDIO OUTPUT 4	ANALOG AUDIO OUTPUT 2			
ANALOG AUDIO OUTPUT 4	ANALOG AUDIO OUTPUT 3			
	ANALOG AUDIO OUTPUT 4			
	For detailed sub-D connections see the manual		_	

Maximum

delay

Input/output

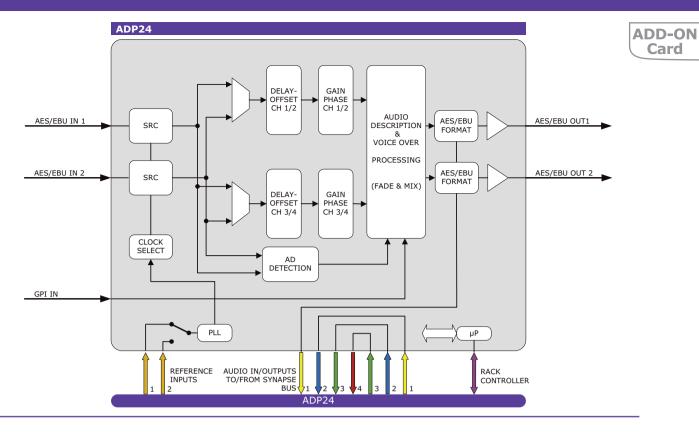
Specifications

Analog audio input		
Туре	Balanced analog audio	
Number of		
inputs	4	
Connector	Removable terminal strip or	
	female sub-D	
Impedance	10k Ohms nominal	
	(differential)	
Sampling rate	48KHz	
Signal level	0dB FS => 12dBu, 15dBu,	
	18dBu or 24dBu	
Level control		
range	+12dB to -60dB 0.25dB	
_	increments	
Frequency		
response	< ±0.1dB, 20Hz to 20kHz	
	(broadcast quality)	
Dynamic range	100dB @-60 dBFS	
THD+N	< 0.002% (>96dB) @ 1kHz,	
	-1dB FS	
	< 0.002% (> 96dB) @ 20Hz	
	to 20kHz, -1dB FS	
CMRR	> 60dB at 1kHz	

Internal processing

-	-		
Resolution	24 bits	temperature	C
Sampling rate	48, 96 or 192KHz synchronous	Dimensions	1
	48k in Mastermode		
Minimum		Electrical	
Input/output		Voltage	-
delay	4ms	Power	<

≥
믿
ุ่ง
4


Analog audio output			
Туре	Balanced analog audio		
Number of			
outputs	4		
Connector	removable terminal strips or		
	female sub-D		
Impedance	50 Ohms balanced		
Signal level	0dBFS => 12dBu, 15dBu,		
	18dBu or 24dBu		
Frequency			
response	< ±0.05dB (20Hz to 20kHz)		
Gain mismatch	< 0.25 dB @997Hz, -20dBFS		
	Multi channel		
THD+N	< 92dB @ 1kHz, -1dBFS		
Crosstalk	< -100dB (20Hz to 20kHz)		
DC offset	< ±30mV		
Dynamic range	> 97dB @-60dBFS		

5200 ms

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

/oltage	+24V to +30V
Power	<10 Watts

ADP24 Audio description and voice-over processing card

The ADP24 is the AES/EBU equivalent of the ADP10. The card is designed to decode the audio description track that is part of an AES/EBU audio stream. It reads the description track and mixes this with the program material. The result is then overwritten in the original audio description track (default 3/4). The user is free to change the default track description, and can change the individual offset delay of the audio tracks. The adjustable delay can also be used for compensation of other video related propagation delay like Dolby Digital encoding.

- Audio description or voice-over mode
- Automatic Audio Description recognition
- Adjustable voice-over, fade-in and fadeout time
- Flexible channel assignment
- 1 original program output
- 1 audio described (mixed) output
- Adjustable offset delay per stereo pair
- Gain (0.25db steps) and phase control (0-180 deg) per channel
- Compatible with pan information
- Can be locked to AES1, AES2, Master Synapse card, Wordclock and B&B
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port

- Generic digital audio description processing
- AES/EBU voice over module

Ordering information Module:

 ADP24: Audio description and voice-over processing card

Standard I/O:

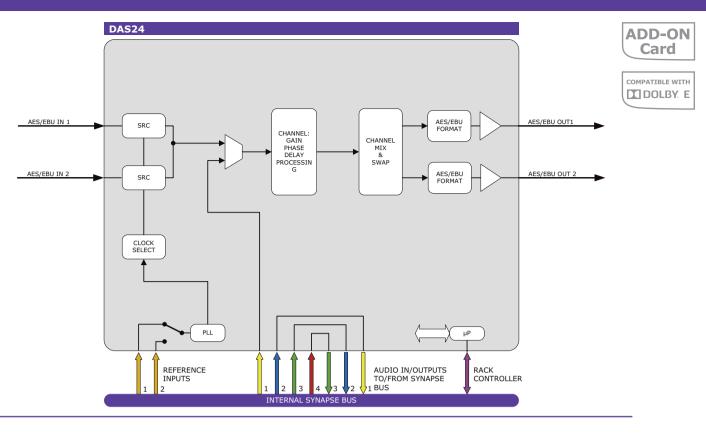
BPL02M_ADP24:

I/O panel for ADP24 with unbalanced AES/EBU in and unbalanced AES/EBU out

BPL04M_ADP24:

I/O panel for ADP24 with balanced AES/EBU in and balanced AES/EBU out

BPL05DM_ADP24:


I/O panel for ADP24 with balanced AES/EBU in, balanced AES/EBU out and tracking on sub-D

Specifications

out	AES audio out	tput
BNC, Screw terminal or	Number of	
sub-D (balanced)	outputs	2
AES-1992 for balanced	Connector	BNC, Screw terminal or
synchronous or asynchronous		female sub-D (balanced)
PCM/AES, SMPTE 276M for	Resolution	24 bits
single ended synchronous or	Sampling rate	48KHz synchronous
asynchronous PCM/AES	Minimum	
	Input/output	
2	delay	2.5ms
48 kHz	Maximum	
24 bits when AES inputs	Input/output	
selected, 20 bits in Master/	delay	1300 ms
ADD-ON mode		
	Miscellaneous	5
	Weight	Approx. 250g
2.5ms	Operating	
	temperature	0 °C to +50 °C
2	Dimensions	137 x 296 x 20 mm (HxWxD)
110 Ohms or 75 Ohms		
0.2V to 1V nom for BNC, 2V	Electrical	
to 7V for balanced operation	Voltage	+24V to +30V
	Power	<6 Watts
3.5ms		
	BNC, Screw terminal or sub-D (balanced) AES-1992 for balanced synchronous or asynchronous PCM/AES, SMPTE 276M for single ended synchronous or asynchronous PCM/AES 2 48 kHz 24 bits when AES inputs selected, 20 bits in Master/ ADD-ON mode 2.5ms 2 110 Ohms or 75 Ohms 0.2V to 1V nom for BNC, 2V to 7V for balanced operation	BNC, Screw terminal or sub-D (balanced)Number of outputsAES-1992 for balanced synchronous or asynchronousConnectorPCM/AES, SMPTE 276M for single ended synchronous or asynchronous PCM/AESResolution Sampling rate Minimum Input/output2 48 kHzMaximum24 bits when AES inputs selected, 20 bits in Master/ ADD-ON modeInput/output delay2.5msMiscellaneous Weight Operating temperature Dimensions2 110 Ohms or 75 Ohms 0.2V to 1V nom for BNC, 2V to 7V for balanced operationElectrical Voltage Power

NA MORE

DAS24 4 channel (2 x AES/EBU) digital audio mixing and shuffle module

The DAS24 is 4 channel digital audio ADD-ON card. Its basic function is the routing and processing of de-embedded audio from a master card to external devices. The DAS24 can perform channel swapping, mixing, gain/phase control. The card has additional AES/EBU inputs with a Sample Rate Converter (SRC) and can therefore be used as an audio shuffler/mixer. The DAS24 has a delaying capability for each channel of up to 1300ms. In ADD-ON mode the card acts as a digital audio output board that is fed from a master card positioned one slot left of the ADD-ON card. The AES/EBU in and outputs are available on 75 Ohms BNC or 110 Ohms screw terminals. AES/EBU inputs with optional SRC (32 to 96kHz sampling).

- Sample clock can be derived from master card (ADD-ON mode)
- 96kHz and 48kHz sample clock locked to: B&B ref or wordclock ref.
- 96kHz and 48kHz sample clock in free running mode
- Available with 110 Ohms (phoenix) or 75 Ohms (BNC) AES/EBU in- and outputs
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Can be used as a Synapse ADD-ON output card
- Full 4 channel shuffling and mixing
- Tracking audio delay on dedicated BNC input
- Offset delay up to 1300 ms
- Master fade function for dedicated Synapse applications
- Clip indication
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Complementary card to:

- SFS12, HFS12
- SDB10, SDB20, HDB20
- SCV12, SAM10, HSU10, HSU20, 2HS10

- AES/EBU audio shuffling and mixing
- Synapse ADD-ON digital
- audio output

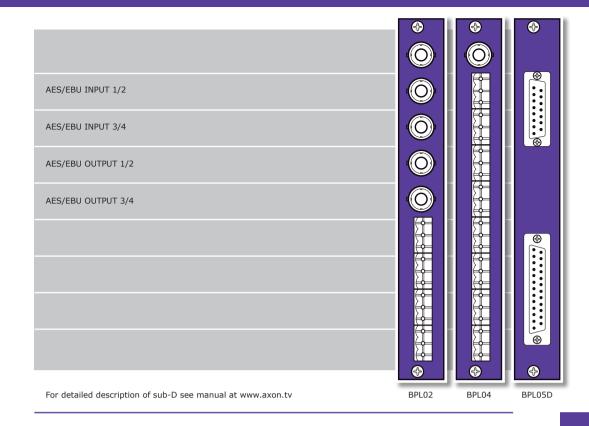
Ordering information Module:

DAS24: 4 channel

(2 x AES/EBU) digital audio mixing and shuffle module

Standard I/O:

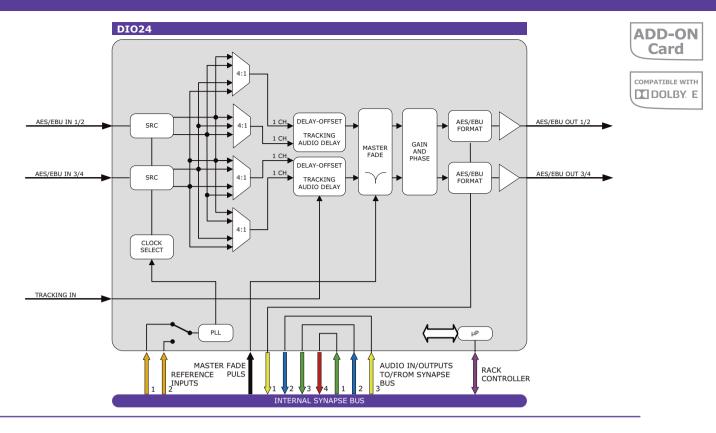
BPL02_DAS24:


I/O panel for DAS24 with unbalanced AES/EBU in and unbalanced AES/EBU out.

BPL04_DAS24:

I/O panel for DAS24 with balanced AES/EBU in and balanced AES/EBU out

BPL05D_DAC24:


I/O panel for DAS24 with balanced AES/EBU in and balanced AES/EBU out on sub-D

Specifications

AES audio inp	out	AES audio out	tput
Connector	BNC, Screw terminal or	Number of	
	female sub-D (balanced)	outputs	2
Standard	AES-1992 for balanced	Connector	BNC, Screw terminal or
	synchronous or asynchronous		female sub-D (balanced)
	PCM/AES, SMPTE 276M for	Resolution	24 bits
	single ended synchronous or	Sampling rate	48KHz synchronous
	asynchronous PCM/AES	Minimum	
Number of		Input/output	
inputs	2	delay	2.5ms
Sampling rate	32 kHz to 96 kHz Synchronous	Maximum	
	48 kHz in Master/ADD-ON	Input/output	
	mode	delay	1300 ms
Resolution	24 bits when AES inputs		
	selected, 20 bits in Master/	Miscellaneous	5
	ADD-ON mode	Weight	Approx. 250g
Minimum		Operating	
input/output		temperature	0 °C to +50 °C
delay	1 ms	Dimensions	137 x 296 x 20 mm (HxWxD
Number of			
Inputs	2	Electrical	
Impedance	110 Ohms or 75 Ohms	Voltage	+24V to +30V
Level	0.2V to 1V nom for BNC, 2V	Power	<8 Watts
	to 7V for balanced operation		

somer of

DIO24 4 channel digital audio sample rate converter, tracking (and offset) delay - ADD-ON card

The DIO24 is a multi-functional product. Its basic function is the conversion of asynchronous AES/EBU digital audio into synchronous AES/EBU utilizing the on-board sample rate converter. The DIO24 has a tracking audio delay, with a delay offset possibility of up to 1300ms, and it can perform the Synapse ADD-ON input and output function.

- AES/EBU inputs with optional SRC (32 to 192kHz sampling)
- Sample clock can be derived from master card (ADD-ON mode)
- 96kHz and 48kHz sample clock locked to: B&B ref or word clock ref.
- 96kHz and 48kHz sample clock in free running mode
- Available with 110 Ohms (phoenix or sub-D) or 75 Ohms (BNC
- AES/EBU in- and outputs
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Can be used as a Synapse ADD-ON input or output card
- Adjustable audio delay offset up to 1300ms in 1ms increments
- Tracking audio delay on dedicated BNC input
- Master fade function for dedicated Synapse applications
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

- Dual AES/EBU stand alone tracking digital audio delay
- Dual AES/EBU offset delay
- Dual generic sample rate converter (lock AES to Black & Burst)

Ordering information Module:

DIO24: 4 channel digital audio sample rate converter, tracking (and offset) delay - ADD-ON card

Standard I/O:

BPL02_DI024: I/O panel for DIO24 with unbalanced AES/EBU in

and balanced AES/EBU out BPL04_DI024:

I/O panel for DIO24 with balanced AES/EBU in and balanced AES/EBU out

BPL05D_DI024: I/O panel for DIO24 with balanced AES/EBU in and balanced AES/EBU out on sub-D

	•	A	{
TRACKING INPUT	\bigcirc	\odot	
AES/EBU INPUT 1/2	Ô		
AES/EBU INPUT 3/4	Ô		
AES/EBU OUTPUT 1/2	Ô		
AES/EBU OUTPUT 3/4			
	{	Optimized in the second sec	€
	BPL02	BPL04	BPL05D

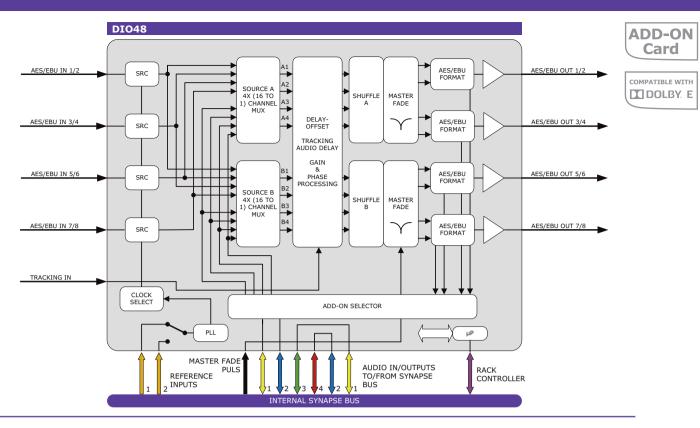
Specifications

Connector

Resolution

Sampling rate

AES audio input Minimum Connector BNC, Screw terminal or Input/output female sub-D (balanced) 2.5ms delay Standard AES-1992 for balanced Maximum Input/output synchronous or asynchronous PCM/AES, SMPTE 276M for delay 1300 ms single ended synchronous or asynchronous PCM/AES **Reference video input** Number of Standard PAL (ITU624-4), NTSC inputs 2 (SMPTE 170M) Sampling rate 32 kHz to 192 kHz Syn-Word clock 48k square-wave chronous 48 kHz in Master/ Number of ADD-ON mode 2 on SFR18, 2 on SFR08, inputs Resolution 24 bits when AES inputs 1 on SFR04 selected, 20 bits in Master/ Connector BNC ADD-ON mode Signal level 1V nominal Minimum Impedance 75 Ohms Input/output **Return loss** > 25dB to 10MHz delay 1 ms Impedance 110 Ohms or 75 Ohms **Miscellaneous** Level 0.2V to 1V nom for BNC, 2V Weight Approx. 250g to 7V for balanced operation Operating temperature 0 °C to +50 °C **AES audio output** Dimensions 137 x 296 x 20 mm (HxWxD) Number of Electrical outputs 2


BNC, Screw terminal or female sub-D (balanced)

48KHz synchronous

24 bits

Voltage	+24V to +30V
Power	<4 Watts

DIO48 8 channel digital audio (192kHz) sample rate converter, tracking (and offset) delay - ADD-ON card

The DIO48 is a multi-functional product. Its basic function is the conversion of asynchronous AES/EBU digital audio into synchronous AES/EBU utilizing the on-board sample rate converter. The DIO48 has a tracking audio delay, with a delay offset possibility of up to 5200 ms, and it can perform the Synapse ADD-ON input and output function. Also provided in this module is shuffling and mixing of the AES channels. This board can be used as an input or output ADD-ON board.

- Selection of 8 channels out of all local and ADD-ON inputs
- Full mixing capabilities of 2 x 4 channels (A and B)
- AES/EBU inputs with optional SRC (32 to 192kHz sampling)
- Sample clock can be derived from master card (ADD-ON mode)
- 48kHz sample clock locked to: B&B ref or word clock ref.
- 48kHz sample clock in free running mode
- Available with 110 Ohms (phoenix or sub-D) or 75 Ohms (BNC)
- AES/EBU in- and outputs
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Can be used as a Synapse ADD-ON input or output card
- Adjustable audio delay offset up to 5200 ms in 1ms increments
- Tracking audio delay on dedicated BNC input
- Master fade function for dedicated Synapse applications
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

- Can be used as an independent audio delay with tracking possibility
- Can be used as a four channel sample rate converter
- 8 channel ADD-ON input card to the HXT10 (and many other 2 group embedding master cards)

Ordering information

Module:

 DIO48: 8 channel digital audio (192kHz) sample rate converter, tracking (and offset) delay
 ADD-ON card

Standard I/O:

BPL01_DIO48:

I/O panel for DIO48 with unbalanced AES/EBU in and out

BPL02_DIO48:

I/O panel for DIO48 with unbalanced AES/EBU in and balanced AES/EBU out

BPL04_DIO48:

I/O panel for DIO48 with balanced AES/EBU in and balanced AES/EBU out

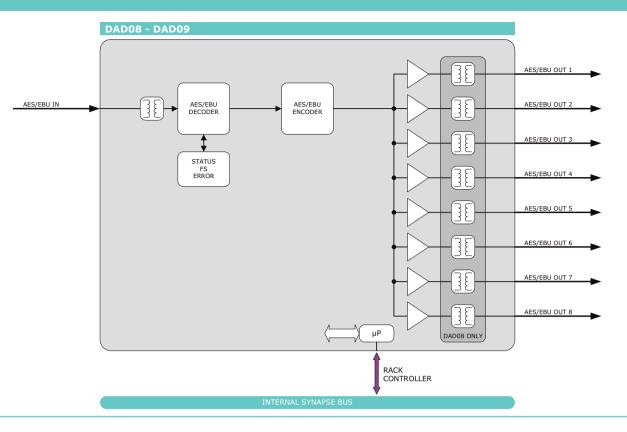
BPL05D_DIO48:

I/O panel for DIO48 with balanced AES/EBU in and balanced AES/EBU out on sub-D

	e	€		A
TRACKING INPUT	Ô	0	\bigcirc	
AES/EBU INPUT 1/2	\bigcirc	0		
AES/EBU INPUT 3/4	\bigcirc	0		
AES/EBU INPUT 5/6	\bigcirc	\bigcirc		
AES/EBU INPUT 7/8	\bigcirc	\bigcirc		
AES/EBU OUTPUT 1/2	Ó			®
AES/EBU OUTPUT 3/4				
AES/EBU OUTPUT 5/6	\bigcirc			
AES/EBU OUTPUT 7/8				
	\mathbf{S}	Ð	₽	A state of the
	BPL01	BPL02	BPL04	BPL05D

Minimum

Specifications


AES audio input

Connector BNC, Screw terminal or Input/output delay female sub-D (balanced) 2.5ms Standard AES-1992 for balanced Maximum Input/output synchronous or asynchronous PCM/AES, SMPTE 276M for delay 5200 ms single ended synchronous or **Reference video input** asynchronous PCM/AES Standard PAL (ITU624-4), NTSC Number of inputs (SMPTE 170M) 4 Sampling rate 32 kHz to 192 kHz Syn-Word clock 48k square-wave chronous 48 kHz in Master/ Number of ADD-ON mode inputs 2 on SFR18, 2 on SFR08, Resolution 24 bits when AES inputs 1 on SFR04 selected, 20 bits in Master/ Connector BNC ADD-ON mode Signal level 1V nominal Minimum Impedance 75 Ohms Input/output **Return loss** > 25dB to 10MHz delay 1 ms Impedance 110 Ohms or 75 Ohms **Miscellaneous** Level 0.2V to 1V nom for BNC, 2V Weight Approx. 250g to 7V for balanced operation Operating temperature 0 °C to +50 °C **AES audio output** Dimensions 137 x 296 x 20 mm (HxWxD) Number of trical ou

Electric
Voltage
Power

DIO48

+24V to +30V <4 Watts

DAD08 - DAD09 Digital (AES/EBU) audio distribution amplifier (08 has transformer coupled outputs)

The DAD08 and DAD09 are digital audio distribution amplifiers that distribute a single input to eight outputs. The DAD08/09 accepts AES/EBU or SPDIF (Consumer Interface Format) digital audio input that is then reclocked, buffered and distributed to the eight outputs. The DAD08 has transformer coupled balanced input and outputs, whereas the DAD09 has a transformer coupled balanced input and direct balanced outputs. Multiple regenerated independent low jitter outputs make the DAD08 and DAD09 ideal for the most demanding digital audio signal distribution requirements in both large and small audio and video facilities. Balanced or unbalanced use is automatically selected by use of the appropriate connector panel.

- 8 outputs
- Transformer coupled input
- Transformer coupled outputs (on DAD08 only)
- 32 to 96 kHz compatibility
- Signal present indication
- Sample frequency indication
- Compatible with 110 Ohms and 75 Ohms environments
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel; DAD09 only.

 Generic digital audio distribution

Ordering information

Modules:

- DAD08: Digital (AES/EBU) audio distribution amplifier with transformed coupled outputs
- DAD09: Digital (AES/EBU) audio distribution amplifier

Standard I/O:

 BPL01_DAD08: I/O panel for DAD08 with unbalanced AES/EBU in and

unbalanced AES/EBU out.

BPL05_DAD08:

I/O panel for DAD08 with balanced AES/EBU in and balanced AES/EBU out.

BPL05D_DAD08:

I/O panel for DAD08 with balanced AES/EBU in and balanced AES/EBU out on sub-D

BPL01_DAD09:

I/O panel for DAD09 with unbalanced AES/EBU in and unbalanced AES/EBU out.

BPL05_DAD09:

I/O panel for DAD09 with balanced AES/EBU in and balanced AES/EBU out.

BPL05D_DAD09:

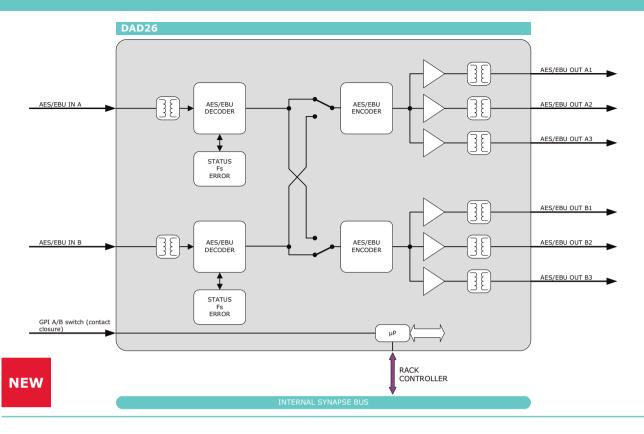
I/O panel for DAD09 with balanced AES/EBU in and balanced AES/EBU out on sub-D

Fiber outputs:

 BPL01T_FC/PC_DAD09:
 I/O panel for DAD09 with fiber transmitter on FC/PC

BPL01T_SC_DAD09: I/O panel for DAD09 with fiber transmitter on SC

Fiber inputs:


- BPL01R_FC/PC_DAD09:
 I/O panel for DAD09 with fiber receiver on FC/PC
- BPL01R_SC_DAD09:
 I/O panel for DAD09 with fiber receiver on SC

		\bigcirc	
AES/EBU INPUT (OPTIONAL FIBER INPUT FOR DAD09)	\bigcirc		
AES/EBU OUTPUT 1	\bigcirc		
AES/EBU OUT 2 (OPTIONAL FIBER OUTPUT FOR DAD09)	\bigcirc		
AES/EBU OUTPUT 3	\bigcirc		
AES/EBU OUTPUT 4	\bigcirc		
AES/EBU OUTPUT 5	Ó		
AES/EBU OUTPUT 6	\bigcirc		
AES/EBU OUTPUT 7	\bigcirc		
AES/EBU OUTPUT 8	\bigcirc		•
	\odot	\bigcirc	€
For detailed description of sub-D see manual at www.axon.tv	BPL01	BPL05	BPL05D

Specifications

AES audio input		AES audio output	
Connector	BNC, Screw terminal or	Number of	
	sub-D (balanced)	outputs	1
Standard	AES-1992 for balanced	Connector	BNC, Screw terminal or
	synchronous or asynchronous		female sub-D (balanced)
	PCM/AES, SMPTE 276M for	Resolution	24 bits
	single ended synchronous or	Sampling rate	Equal to input
	asynchronous PCM/AES		
Number of		Miscellaneous	5
inputs	1	Weight	Approx. 250g
Sampling rate	32 kHz to 96 kHz	Operating	
Resolution	24 bits	temperature	0 °C to +50 °C
Minimum		Dimensions	137 x 296 x 20 mm (HxWxD)
Input/output			
delay	4 samples	Electrical	
Impedance	110 Ohms or 75 Ohms	Voltage	+24V to +30V
Level	0.2V to 1V nom for BNC, 2V	Power	<3 Watts
	to 7V for balanced operation		

145

DAD26 Dual channel digital (AES/EBU) audio distribution amplifier with 2x2 and 2x1 function

The DAD26 is a dual (AES/EBU) channel digital audio distribution amplifier. It has 2 individual inputs and two times three outputs. All outputs can be assigned to a single input making the device a 1 to 6 DA. A (GPI controlled) switch can be used to enable a 2x2 or 2x1 function. The DAD26 accept AES/EBU or SPDIF (Consumer Interface Format) digital audio input that is then reclocked, buffered and distributed to the dual 3 outputs. The DAD26 has transformer coupled balanced input and outputs and can be used with unbalanced I/O via the BPL01. Multiple regenerated independent low jitter outputs make the DAD26 ideal for the most demanding digital audio signal distribution requirements in both large and small audio and video facilities. Balanced or unbalanced use is automatically selected by use of the appropriate connector panel.

- 2 Inputs
- 2 x 3 Outputs
- 2x1 or 2x2 function (GPI, Ethernet, signal detection
- Transformer coupled input
- Transformer coupled outputs
- 32 to 192 kHz compatibility
- Signal present indication
- Sample frequency indication
- Compatible with 110 Ohms and 75 Ohms environments
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 or 2 fiber inputs (replacing 1 or 2 SDI inputs) or
 1 or 2 fiber outputs (replacing 1 or 2 SDI outputs) on I/O panel

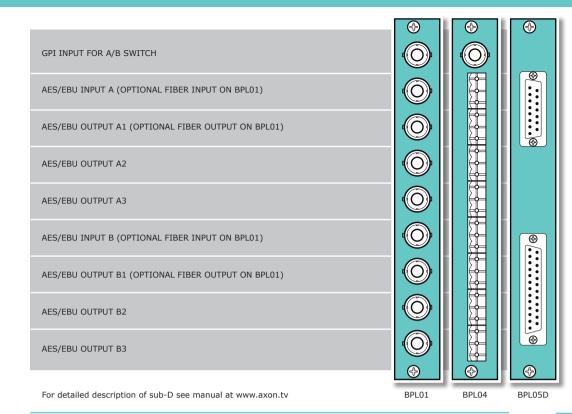
- Generic digital audio distribution
- AES/EBU back-up switching

Ordering information

Modules:

 DAD26: Dual channel Digital (AES/EBU) audio distribution amplifier with 2x2 and 2x1 function

Standard I/O:


- BPL01_DAD26: I/O panel for DAD26 with unbalanced AES/EBU in and unbalanced AES/EBU out.
- BPL04_DAD26: I/O panel for DAD26 with balanced AES/EBU in and balanced AES/EBU out.
- BPL05D_DAD26: I/O panel for DAD08 with balanced AES/EBU in and balanced AES/EBU out on sub-D

Fiber outputs:

- BPL01T_FC/PC_DAD26: I/O panel for DAD26 with fiber transmitter on FC/PC
- BPL01T_SC_DAD26: I/O panel for DAD26 with fiber transmitter on SC
- BPL01T2_FC/PC_DAD26:
 I/O panel for DAD26 with 2 fiber transmitters on FC/PC
- BPL01T2_SC_DAD26: I/O panel for DAD26 with 2 fiber transmitters on SC

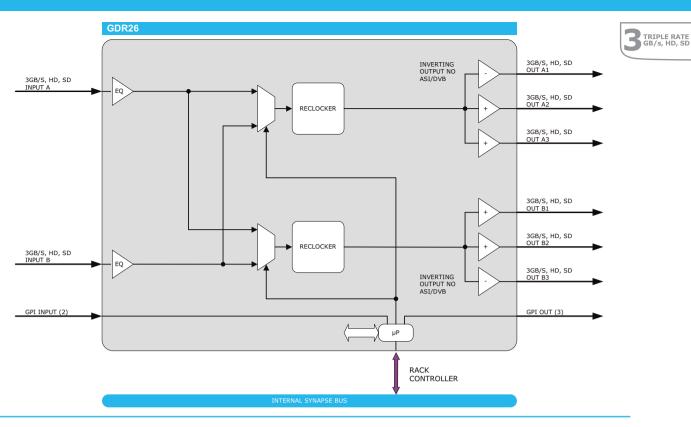
Fiber inputs:

- BPL01R_FC/PC_DAD26:
 I/O panel for DAD26 with fiber receiver on FC/PC
- BPL01R_SC_DAD26: I/O panel for DAD26 with fiber receiver on SC
- BPL01R2_FC/PC_DAD26:
 I/O panel for DAD26 with
 2 fiber receivers on FC/PC
- BPL01R2_SC_DAD26:
 I/O panel for DAD26 with 2 fiber receivers on SC

Specifications

AES audio inp	ES audio input M	
Connector	BNC, Screw terminal or	Wei
	female sub-D (balanced)	Оре
Standard	AES-1992 for balanced	tem
	synchronous or asynchro-	Dim
	nous PCM/AES, SMPTE 276M	
	for single ended synchronous	Elec
	or asynchronous PCM/AES	Volt
Number of		Pow
inputs	2	
Sampling rate	32 kHz to 192 kHz	
Resolution	24 bits	
Minimum input/		
output delay	4 samples	
Impedance	110 Ohms or 75 Ohms	
Level	0.2V to 1V nom for BNC, 2V	
	to 7V for balanced operation	

AES audio output


Number of	
outputs	2x 3
Connector	BNC, Screw terminal or
	female sub-D (balanced)
Resolution	24 bits
Sampling rate	Equal to input

liscellaneous /eight Approx. 250g perating emperature 0° C to +50° C imensions 137 x 296 x 20 mm (HxWxD)

lectrical

oltage	+24V to +30V
ower	<3 Watts

GDR26 3Gbit/s dual input distribution amplifier with 3 reclocked outputs per channel (ASI/DVB compatible)

The GDR26 is a dual channel 3Gb/s, HD, SD SDI reclocking distribution amplifier.

- Dual channel with 3 outputs each
- Single channel with 6 outputs
- GPI controlled input swapping and status monitoring
- GPI-1 = select input 1
- GPI-2 = select input 2
- GPO-1 = input 1 OK
- GPO-2 = input 2 OK
- GPO-3 = status of selected input
- 2x2 or 2x1 function
- Compatible with:
 - 270 Mbit/s (SMPTE 259M)
 - 1485 Mbit/s (SMPTE 292M)
 - 2970 Mbit/s (SMPTE 424M) =3Gb/s
- Non inverting outputs (ASI/DVB compatible)
- Bypass function of the reclocker for non-standard frequencies

The GDR26 can be used as a dual channel generic extreme wideband 3Gb/s DA

Ordering information Module:

GDR26: 3Gb/s, HD, SD-SDI dual reclocking distribution 1 to 3 amplifiers

Standard I/O:

BPH07_GDR26: I/O-panel for GDR26

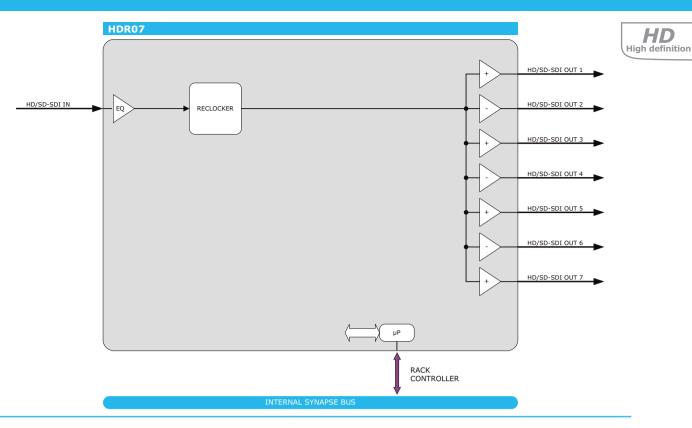
BPH17_GDR26: I/O-panel for GDR26 with RJ45 GPI/O

3GB/S, HD, SD OUTPUT A3	(O)	0
3GB/S, HD, SD OUTPUT A2	\bigcirc	\bigcirc
INVERTING 3GB/S, HD, SD OUTPUT A1	\bigcirc	\bigcirc
3GB/S, HD, SD INPUT A	\bigcirc	\bigcirc
GPI INPUT/OUTPUT	\bigcirc	
3GB/S, HD, SD INPUT B	\bigcirc	\odot
3GB/S, HD, SD OUTPUT B1	\bigcirc	
3GB/S, HD, SD OUTPUT B2	\bigcirc	\odot
INVERTING 3GB/S, HD, SD OUTPUT B3	\bigcirc	0
	\bigcirc	Θ

BPH07 BPH17

Specifications

Video input		Miscellaneou	IS
Standard	3Gb/s ,HD and SD SDI:	Weight	Approx. 250g
	SMPTE424, SMPTE259M,	Operating	
	SMPTE 292M	temperature	0 °C to +50 °C
Number of		Dimensions	137 x 296 x 20 mm (HxWxD)
inputs	2		
Connector	BNC	Electrical	
Equalization	Typical maximum equalized	Voltage	+24V to +30V
	length of Belden 1694A cable:	Power	<6 Watts
	70m at 2.97Gb/s, 140m at		
	1.485Gb/s, and 350m at		
	270Mb/s		
Return loss	> 15dB up to 3GHz		


Number of

Number of	
outputs	6 (2 x 3)
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	135ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.5GHz (typ.)
	> 10dB up to 3GHz (typ.)
Wideband jitter	< 0.2UI

GDR26

149

DIGITAL VIDEO DISTRIBUTION

HDR07 HD reclocking distribution amplifier

The HDR07 is an HD/SD-SDI reclocking distribution amplifier.

- Compatible with:
 - 143 Mbit/s
 - 177 Mbit/s
 - 270 Mbit/s
 - 360 Mbit/s
 - 540 Mbit/s
 - 1485 Mbit/s
- Inverting and non inverting outputs
- Bypass function of the reclocker for non-standard frequencies
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

The HDR07 can be used as a generic wideband DA

Ordering information

Module:

HDR07: HD/SD reclocking distribution amplifier

Standard I/O:

BPH07_HDR07: I/O panel for HDR07

Fiber outputs:

BPH07T_FC/PC_HDR07: I/O panel for HDR07 with fiber transmitter on FC/PC

BPH07T_SC_HDR07: I/O panel for HDR07 with fiber transmitter on SC

Fiber inputs:

BPH07R_FC/PC_HDR07: I/O panel for HDR07 with fiber receiver on FC/PC

BPH07R_SC_HDR07: I/O panel for HDR07 with fiber receiver on SC

HD/SD SDI INPUT (OPTIONAL FIBER INPUT)

HD/SD SDI OUTPUT 1

HD/SD SDI OUTPUT 2

HD/SD SDI OUTPUT 3 (OPTIONAL FIBER OUTPUT)

HD/SD SDI OUTPUT 4

HD/SD SDI OUTPUT 5

HD/SD SDI OUTPUT 6

HD/SD SDI OUTPUT 7

For fiber connectivity see www.axon.tv

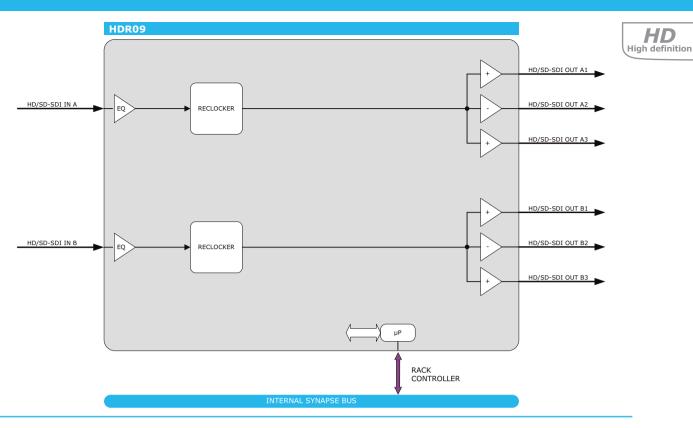
Specifications

HD/SD Seria	l video input
Standard	SD and HD SDI: SMPTE
	292M, SMPTE 259M
Number of	
inputs	1
Connector	BNC
Equalization	Automatic to 100m
	@ 1.5Gb/s with Belden 1694
	(or equivalent)
Return loss	> 15dB up to 1.485GHz

Miscellaneous Weight Approx. 250g Operating temperature 0 °C to +50 °C Dimensions 137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	4 Watts


Serial video output

Number of	
outputs	7
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	200ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.485GHz
Wideband jitter	< 0.2UI

 \bigcirc

HDR07

HDR09 HD dual input 1 to 3 reclocking distribution amplifier

The HDR09 is a dual channel HD/SD-SDI reclocking distribution amplifier.

Compatible with:

- 143 Mbit/s
- 177 Mbit/s
- 270 Mbit/s
- 360 Mbit/s
- 540 Mbit/s
- 1485 Mbit/s
- Inverting and non inverting outputs
- Bypass function of the reclocker for non-standard frequencies
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber input (replacing 2 SDI inputs) or 2 fiber output (replacing 2 SDI outputs) on I/O panel

The HDR09 can be used as a dual channel generic wideband DA

Ordering information Module:

HDR09: HD dual reclocking distribution dual 1 to 3 amplifier

Standard I/O:

BPH07_HDR09: I/O panel for HDR09

Fiber outputs:

BPH07T2_FC/PC_HDR09: I/O panel for HDR09 with 2 fiber transmitters on FC/PC

BPH07T2_SC_HDR09: I/O panel for HDR09 with 2 fiber transmitters on SC

Fiber inputs:

- BPH07R2_FC/PC_HDR09: I/O panel for HDR09 with 2 fiber receivers on FC/PC
- BPH07R2_SC_HDR09: I/O panel for HDR09 with 2 fiber receivers on SC

HD/SD SDI OUTPUT A1
HD/SD SDI OUTPUT A2
HD/SD SDI OUTPUT A3 (OPTIONAL FIBER OUTPUT)
HD/SD SDI INPUT B (OPTIONAL FIBER INPUT)
HD/SD SDI OUTPUT B1
HD/SD SDI OUTPUT B2
HD/SD SDI OUTPUT B3 (OPTIONAL FIBER OUTPUT)
For fiber connectivity see www.axon.tv

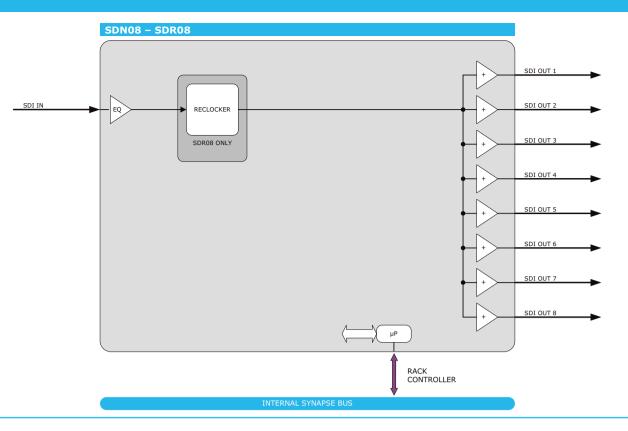
HD/SD SDI INPUT A (OPTIONAL FIBER INPUT)

Specifications

HD/SD Serial video input	
Standard	SD and HD SDI: SMPTE
	292M, SMPTE 259M
Number of	
inputs	2
Connector	BNC
Equalization	Automatic to 100m
	@ 1.5Gb/s with Belden 1694
	(or equivalent)
Return loss	> 15dB up to 1.485GHz

Miscellaneous Weight Approx. 250g Operating temperature 0 °C to +50 °C Dimensions 137 x 296 x 20 mm (HxWxD)

Electrical


Voltage	+24V to +30V
Power	5 Watts

Serial video output

Number of	
outputs	6 (2 x 3)
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	200ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.485GHz
Wideband jitter	< 0.2UI

HDR09

153

SDN08 - SDR08 SD-SDI (Non=N) reclocking distribution amplifier (ASI/DVB compatible)

The SDR & SDN series provide a range of distribution amplifiers with flexible input and output variations. The SDR08 reclocks the input signal. The SDN/R08 is a 1 to 8 distribution amplifier compatible with ASI/DVB.

- 8 standard or reclocked outputs
- Input carrier detection
- Reclocking compatible with:
 - 143Mb/s
 - 177Mb/s
 - 270Mb/s
 - 360Mb/s
- ASI/DVB compatible
- Guaranteed output on BNC 4 with the BPX01 electromechanical by-pass relay
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Compatible with Fiber I/O panels
- Optional CVBS output (replacing one SDI output)

- The SDN08 and SDR08 can be used as a generic DA
- ASI/DVB distribution
- Dual Fiber I/O driver/receiver

Ordering information

Modules:

- SDR08: SD-SDI reclocking distribution amplifier (ASI/ DVB compatible)
- SDN08: SD-SDI non-reclocking distribution amplifier (ASI/DVB compatible)

Standard I/O :

- BPL01_SDR08: I/O panel for SDR08
- BPL01_SDN08: I/O panel for SDN08
- BPX01_SDR08:I/O panel for SDR08 with relay bypass
- BPX01_SDN08: I/O panel for SDN08 with relay bypass

Fiber outputs:

BPL01T_FC/PC_SDR08: I/O panel for SDR08 with fiber transmitter on FC/PC

BPL01T FC/PC SDN08: I/O panel for SDN08 with fiber transmitter on FC/PC

BPL01T SC SDR08: I/O panel for SDR08 with fiber transmitter on SC

BPL01T_SC_SDN08: I/O panel for SDN08 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_SDR08: I/O panel for SDR08 with fiber receiver on FC/PC
- BPL01R_FC/PC_SDN08: I/O panel for SDN08 with fiber receiver on FC/PC
- BPL01R_SC_SDR08: I/O panel for SDR08 with fiber receiver on SC
- BPL01R_SC_SDN08: I/O panel for SDN08 with fiber receiver on SC

CVBS outputs:

- BPL01C_SDR08: I/O panel for SDR08 with CVBS output
- BPL01C_SDN08: I/O panel for SDN08 with CVBS output

SD SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc
SD SDI OUTPUT 1	\bigcirc
SD SDI OUTPUT 2	\bigcirc
SD SDI OUTPUT 3 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc
SD SDI OUTPUT 4	\bigcirc
SD SDI OUTPUT 5	\bigcirc
SD SDI OUTPUT 6	\bigcirc
SD SDI OUTPUT 7	\bigcirc
SD SDI OUTPUT 8	\bigcirc
	€
For fiber connectivity see www.axon.tv	BPL01

For fiber connectivity see www.axon.tv

Specifications

Serial video input	
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	1
Equalization	Automatic to 300m @
	270Mb/s with Belden 1694A
	or equivalent cable
Return loss	> 15dB up to 270MHz

SD serial video output

	e entre
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	8
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

4

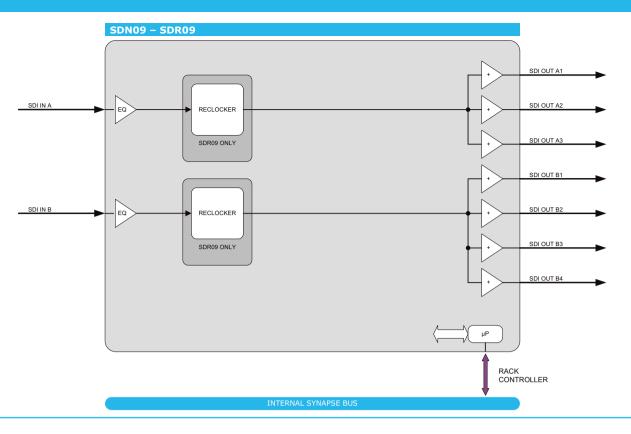
 \cap

Ô

Ô

Ô

Ć


BPX01

elay t

Electrical

Voltage	+24V to +30V
Power	<5 Watts

SDN09 - SDR09 SD-SDI (Non=N) reclocking dual channel distribution amplifier (ASI/DVB compatible)

The SDR & SDN series provide a range of distribution amplifiers with flexible input and output variations. The SDR09 reclocks the input signal. The SDN/R09 is a 1 to 3 and 1 to 4 distribution amplifier compatible with ASI/DVB.

- Dual channel
- 3 and 4 standard or reclocked outputs
- Input carrier detection
- Reclocking compatible with:
 - 143Mb/s
 - 177Mb/s
 - 270Mb/s
 - 360Mb/s
- ASI/DVB compatible
- Guaranteed output on BNC 4 with the BPX01 electromechanical by-pass relay
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Compatible with fiber I/O panels
- Optional CVBS output (replacing one SDI output)

- The SDN09 and SDR09 can be used as a generic dual channel DA
- ASI/DVB distribution
- Fiber I/O driver/receiver

Ordering information

Module:

- SDR09: SD-SDI reclocking dual channel distribution amplifier (ASI/DVB compatible)
- **SDN09:** SD-SDI non-reclocking dual channel distribution amplifier (ASI/DVB compatible)

Standard I/O:

- BPL01_SDR09: I/O panel for SDR09
- BPX01 SDR09: I/O panel for SDR09 with relay bypass
- BPL01_SDN09: I/O panel for SDN09
- BPX01_SDN09: I/O panel for SDN09 with relay bypass

Fiber outputs:

BPL01T2_FC/PC_SDR09: I/O panel for SDR09 with two fiber transmitters on FC/PC

BPL01T2_SC_SDR09: I/O panel for SDR09 with two fiber transmitters on SC

- BPL01T2_FC/PC_SDN09: I/O panel for SDN09 with two fiber transmitters on FC/PC
- BPL01T2_SC_SDN09: I/O panel for SDN09 with two fiber transmitters on SC

Fiber inputs:

- BPL01R2_FC/PC_SDR09: I/O panel for SDR09 with two fiber receivers on FC/PC
- BPL01R2_SC_SDR09: I/O panel for SDR09 with two fiber receivers on SC
- BPL01R2_FC/PC_SDN09: I/O panel for SDN09 with two fiber receivers on FC/PC
- BPL01R2_SC_SDN09: I/O panel for SDN09 with two fiber receivers on SC

CVBS outputs:

- BPL01C2_SDN09: I/O panel for SDN09 with 2 CVBS outputs
- BPL01C2_SDR09: I/O panel for SDR09 with 2 CVBS outputs

SD SDI INPUT A (OPTIONAL FIBER INPUT)
SD SDI OUTPUT A1
SD SDI OUTPUT A2
SD SDI OUTPUT A3 (OPTIONAL FIBER OR CVBS OUTPUT)
SD SDI INPUT B (OPTIONAL FIBER INPUT)
SD SDI OUTPUT B1
SD SDI OUTPUT B2
SD SDI OUTPUT B3
SD SDI OUTPUT B4 (OPTIONAL FIBER OR CVBS OUTPUT)

For fiber connectivity see www.axon.tv

Specifications

Serial video input	
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	2
Equalization	Automatic to 300m @
	270Mb/s with Belden 1694A
	or equivalent cable
Return loss	> 15dB up to 270MHz

SD serial video output

	-
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	3 and 4
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<6 Watts

(+)

Ó

 $\hat{\mathbf{O}}$

Ô

Ô

Ó

O

Ô

Ο

Ó

BPX01

elay t

Ο

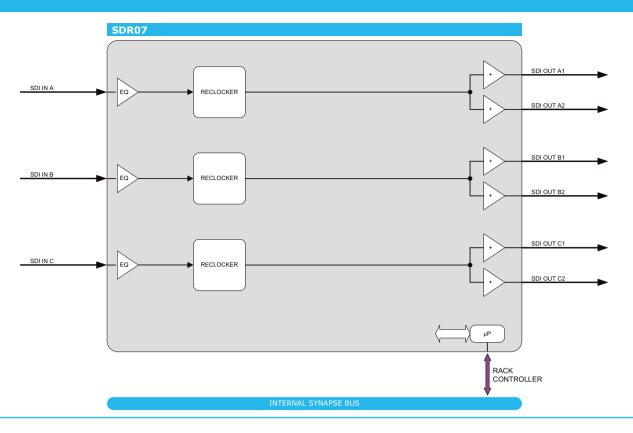
Ô

Ô

Ô

Ô

Ο


O

С

С

BPL01

SDR07 SD-SDI triple channel reclocking distribution amplifier (ASI/DVB compatible)

The SDR07 is a triple channel reclocking distribution amplifier compatible with ASI/DVB.

- All outputs are non-inverting, ASI/DVB compatible
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Compatible with fiber I/O panels

- The SDR07 can be used as a generic triple channel 1 to 2 DA
- ASI/DVB distribution

Ordering information

Module:

SDR07: SD-SDI reclocking triple channel distribution amplifier (ASI/DVB compatible)

Standard I/O:

BPL01_SDR07: I/O panel for SDR07

Fiber outputs:

- BPL01T3_FC/PC_SDR07: I/O panel for SDR07 with three fiber transmitters on FC/PC
- BPL01T3_SC_SDR07: I/O panel for SDR07 with three fiber transmitters on SC

Fiber inputs:

- BPL01R3_FC/PC_SDR07: I/O panel for SDR07 with three fiber receivers on FC/PC
- BPL01R3_SC_SDR07: I/O panel for SDR07 with three fiber receivers on SC

SD SDI OUTPUT A1
SD SDI OUTPUT A2 (OPTIONAL FIBER OUTPUT)
SD SDI INPUT B (OPTIONAL FIBER INPUT)
SD SDI OUTPUT B1
SD SDI OUTPUT B2 (OPTIONAL FIBER OUTPUT)
SD SDI INPUT C (OPTIONAL FIBER INPUT)
SD SDI OUTPUT C1

SD SDI INPUT A (OPTIONAL FIBER INPUT)

SD SDI OUTPUT C2 (OPTIONAL FIBER OUTPUT)

For fiber connectivity see www.axon.tv

Specifications

Serial video input Standard 625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio Number of inputs 3 Equalization Automatic to 300m @ 270Mb/s with Belden 1694A or equivalent cable > 15dB up to 270MHz **Return loss**

SD serial video output

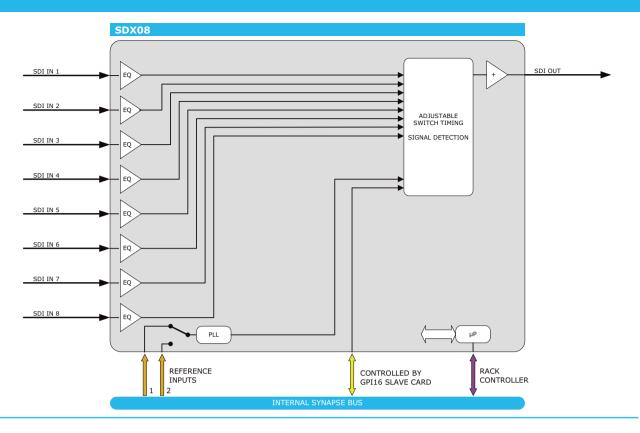
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	3 x 2
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

Miscellaneous Weight Approx. 250g Operating temperature 0 °C to +50 °C Dimensions 137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<6 Watts

 \oplus


 \bigcirc

O

 \bigcirc

BPL01

SDX08 8 SD-SDI to 1 SD-SDI switcher

The SDX08 is an 8 channel SDI video switcher. The SDX08 routes 1 of 8 SDI-inputs to 1 SDI-output. The SDX08 has 2 main functions, it can act as a backup-switcher and as a router.

- Automatic backup function on all channels
- Switch back function in back-up mode
- Can be controlled by a dedicated GPI16 card (with tally back response)
- Free selection of line and sample for switching.
- EDH detection
- Reclocked output
- Full control and status monitoring through the front panel of the SFR04/18 frame and the Ethernet port (ACP)
- Compatible with fiber I/O panels
- Optional CVBS output (replacing one SDI output)

- Generic or monitoring 8 by 1 switch
- Back-up switcher
- Small routing applications

Ordering information

Module:

SDX08: SD-SDI reclocking dual channel distribution amplifier (ASI/DVB compatible)

Standard I/O:

- BPL01_SDX08: I/O panel for SDX08
- BPX01_SDX08: I/O panel for SDX08 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_SDX08: I/O panel for SDX08 with fiber transmitter on FC/PC
- BPL01T_SC_SDX08: I/O panel for SDX08 with fiber transmitter on SC

Fiber inputs:

- BPL01R2_FC/PC_SDX08: I/O panel for SDX08 with two fiber receivers on FC/PC
- BPL01R2 SC SDX08: I/O panel for SDX08 with two fiber receivers on SC
- BPL01R_FC/PC_SDX08: I/O panel for SDX08 with fiber receiver on FC/PC
- BPL01R_SC_SDX08: I/O panel for SDX08 with fiber receiver on SC

CVBS output:

BPL01C_SDX08: I/O panel for SDX08 with CVBS output

SD SDI INPUT 1 (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc
SD SDI INPUT 2	\bigcirc	\bigcirc
SD SDI INPUT 3 (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc
SD SDI OUTPUT (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	
SD SDI INPUT 4	\bigcirc	
SD SDI INPUT 5	\bigcirc	
SD SDI INPUT 6	\bigcirc	\bigcirc
SD SDI INPUT 7	\bigcirc	\bigcirc
SD SDI INPUT 8	Ó	\bigcirc
	\bigcirc	\bigcirc
For fiber connectivity see www.axon.tv	BPL01	BPX01

Specifications

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	8	
Equalization	Automatic to 300m @	
	270Mb/s with Belden 1694A	
	or equivalent cable	
Return loss	> 15dB up to 270MHz	

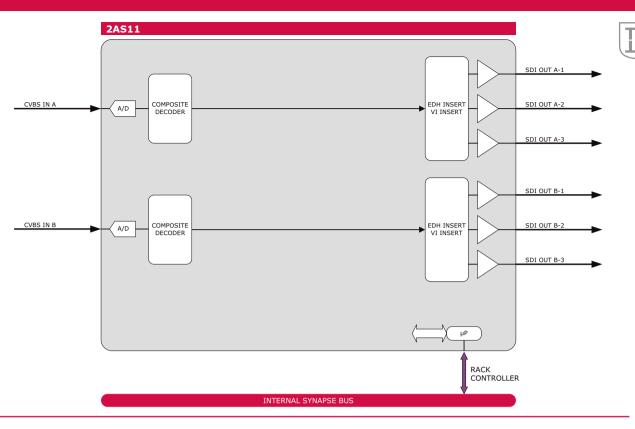
SD serial video output

ooutput
625/50 or 525/59.94 SMPTE
259M-C (270Mb/s) with
SMPTE 272M embedded audio
1
800mV nominal
0V ±0.5V
800ps nominal
< 10% of amplitude
> 15dB up to 270MHz

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

 \bigcirc


 \bigcirc

elay bypass

Electrical

Voltage	+24V to +30V
Power	<7 Watts

2AS11 Dual channel 12-bit composite decoder with 5 line comb filter

The 2AS11 is a broadcast quality dual channel composite decoder. The 12-bit high performance digital decoding stages provide superior quality 5-line comb filtering.

Because the 2AS11 (TWINS) has 2 fully independent channels, it increases the Synapse decoding density by 100%, allowing 36 individual composite decoders in 4 rack units. When frame synchronization is required the 2AS12 should be used.

- Dual channel (TWINS)
- 12 bit full broadcast specified decoding
- Compatible with:
 - NTSC-J
 - NTSC-M
 - PAL60
 - NTSC443
 - PAL-BGHID
 - PAL-N
 - PAL-M
 - PAL-M-setup
 - PALcmbN
 - PALcmbN-setup
 - SECAM
 - SECAM-setup

- 3 SDI outputs per channel
- On Input loss display:
 - Black
 - Green
 - Continuous Analog input
- 8 channels in 1 RU
- 16 channels in 2RU
- 36 channels in 4 RU
- EDH insertion
- VI insertion (individual per channel)
- Gain adjustment
- Hue adjustment
- Y shaping filters
- Y peaking adjustment
- Compatible with PAL, NTSC and Secam
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel

Applications

- The 2AS11 is ideal for converting locked CVBS sources into SDI.
- High density multi channel decoding in OB-Trucks

Ordering information

Module:

 2AS11: Dual 12-bit composite decoder with 5 line comb filter

Standard I/O:

BPL11_2AS11: I/O panel for 2AS11

Fiber outputs:

- BPL11T2_FC/PC_2AS11: I/O panel for 2AS11 with 2 fiber transmitters on FC/PC
- BPL11T2_SC_2AS11: I/O panel for 2AS11 with 2 fiber transmitters on SC

CVBS outputs:

BPL11C2_2AS11:
 I/O panel for 2AS11 with
 2 CVBS outputs

CVBS INPUT A SDI OUTPUT A-1 SDI OUTPUT A-2 SDI OUTPUT A-3 (OPTIONAL FIBER OR CVBS OUTPUT) CVBS INPUT B SDI OUTPUT B-1 SDI OUTPUT B-2 SDI OUTPUT B-3 (OPTIONAL FIBER OR CVBS OUTPUT)

For fiber connectivity see www.axon.tv

Specifications

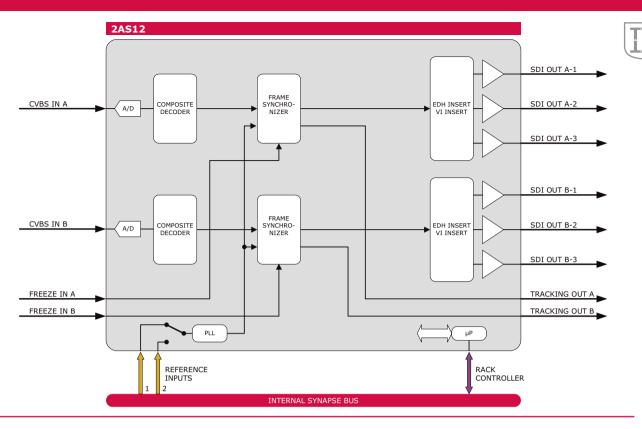
Video input

video input		Sei
Standard	PAL (ITU624-4),	Star
	NTSC (SMPTE 170M)	
Number of		Nun
inputs	1	out
Impedance	75 Ohms	Con
Return loss	> 35dB up to 10MHz	Sigr
Frequency		DC
response	< ±0.25dB (100KHz	Rise
	to 4.2MHz)	Ove
Differential gain	< ±0.5% typical	Ret
Differential		Jitte
phase	< ±0.2° typical	
Noise floor	< -57dB RMS (black video,	Mis
	15KHz to 5MHz)	Wei
C/L gain	< ±0.5%	Оре
C/L delay	< ±9 ns	tem
Minimum delay	3 lines	Dim

Reference video input

Standard	PAL (ITU624-4),	
	NTSC (SMPTE 170M)	
Number of		
inputs	2 on SFR18, 2 on SFR08,	
	1 on SFR04	
Connector	BNC	
Signal level	1V nominal	
Impedance	75 Ohms	
Return loss	> 25dB to 10MHz	

Serial video output		
Standard	SMPTE 259M 525/59.95	
	or 625/50	
Number of		
outputs	2	
Connector	BNC	
Signal level	800mV nominal	
DC offset	0V ±0.5V	
Rise/fall time	900ps nominal	
Overshoot	< 10% of amplitude	
Return loss	> 15dB to 270MHz	
Jitter	< 0.1UI	
Miscellaneous		


Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Electrical	
Voltage	+24V to +30V
Power	4 Watts

4

2AS11

2AS12 Dual channel 12-bit composite decoder with 5 line comb filter and frame synchronizer

The 2AS12 is a broadcast quality dual channel composite decoder with frame synchronizer. The 12-bit high performance digital decoding stages provide superior quality 5-line comb filtering. Because the 2AS12 (TWINS) has 2 fully independent channels, it increases the Synapse decoding density by 100%, allowing 36 individual composite decoder in 4 rack units. When no frame synchronization is required the 2AS11 should be used.

- Dual channel (TWINS)
- 12 bit full broadcast specified decoding
- Compatible with:
 - NTSC-J
 - NTSC-M
 - PAL60
 - NTSC443
 - PAL-BGHID
 - PAL-N
 - PAL-M
 - PAL-M-setup
 - PALcmbN
 - PALcmbN-setup
 - SECAM
 - SECAM-setup
- 3 SDI outputs per channel

- On Input loss display:
 - Black
 - Green
 - Continuous Analog input
- Full frame adjustable output phase with respect to reference in sample increments
- Freeze mode
- Audio delay tracking output
- 3 SDI outputs per channel
- 8 channels in 1RU
- 16 channels in 2RU
- 36 channels in 4RU
- EDH insertion
- VI insertion (individual per channel)
- Gain adjustment
- Hue adjustment
- Y shaping filters
- Y peaking adjustment
- Compatible with PAL, NTSC and SECAM
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel

Applications

- The 2AS12 is ideal for converting non sync CVBS sources into SDI
- High density multi channel decoding

Ordering information

Module:

 2AS12: Dual 1-bit composite decoder with
 5 line comb filter and frame synchronizer

Standard I/O:

BPL11_2AS12: I/O panel for 2AS12

Fiber outputs:

- BPL11T2_FC/PC_2AS12:
 I/O panel for 2AS12 with
 2 fiber transmitters on FC/PC
- BPL11T2_SC_2AS12: I/O panel for 2AS12 with 2 fiber transmitters on SC

CVBS outputs:

 BPL11C2_2AS12: I/O panel for 2AS12 with 2 CVBS outputs

CVBS INPUT A
SDI OUTPUT A-1
SDI OUTPUT A-2
SDI OUTPUT A-3 (OPTIONAL FIBER OR CVBS OUTPUT)
FREEZE & TRACKING INPUT/OUTPUT
CVBS INPUT B
SDI OUTPUT B-1
SDI OUTPUT B-2
SDI OUTPUT B-3 (OPTIONAL FIBER OR CVBS OUTPUT)

For fiber connectivity see www.axon.tv

Specifications

Reference video input

Standard

Number of

Connector Signal level

Impedance

Return loss

inputs

Video input

Standard	PAL (ITU624-4), NTSC	Sta
	(SMPTE 170M)	
Number of		Nur
inputs	1	out
Impedance	75 Ohms	Con
Return loss	> 35dB up to 10MHz	Sigr
Frequency		DC
response	< ±0.25dB (100KHz	Rise
	to 4.2MHz)	Ove
Differential gain	< ±0.5% typical	Ret
Differential		Jitte
phase	< ±0.2° typical	
Noise floor	< -57dB RMS (black video,	Mis
	15KHz to 5MHz)	Wei
C/L gain	< ±0.5%	Оре
C/L delay	< ±9 ns	tem
Minimum delay	3 lines	Dim
Maximum delay	1 frame	

PAL (ITU624-4), NTSC (SMPTE 170M)

1 on SFR04 BNC

1V nominal

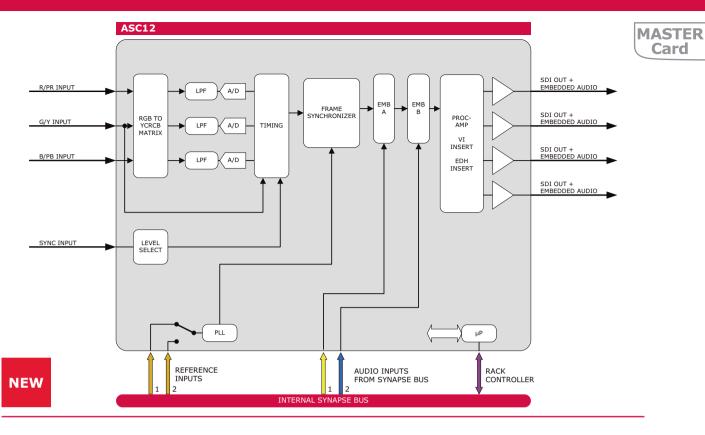
> 25dB to 10MHz

75 Ohms

2 on SFR18, 2 on SFR08,

Serial video output

Serial video ol	ութու
Standard	SMPTE 259M 525/59.95
	or 625/50
Number of	
outputs	2
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	900ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB to 270MHz
Jitter	< 0.1UI


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	4 Watts

ASC12 Component (near CCIR601) or RGB to SDI converter

The ASC12 is the ideal solution for component video or RGB to SDI conversion. It features near CCIR601 input filtering for benchmark flat frequency response and uses 12-bit A/D conversion and processing, to obtain high quality 10-bit operation. Digital 12-bit feedback clamps with noise filtering provides accurate clamping of the input signals. The unit has an industry leading jitter performance, resulting in a high degree of output signal stability. The ASC12 accepts analog component signals in YCrCb format or RGB format. Betacam level selection allows the level of the component color difference signal to be set in accordance with Betacam levels and EBU/SMPTE levels.

The module has the unique ADD-ON embedding function by adding a Synapse A/D converter or AES/EBU input card that allows 2 group embedding. Four SDI outputs are available with embedded audio, reducing the need for distribution amplifiers and external embedders.

- 12-bit A/D
- Reference on Y. G.
- Compatible with Betacam and EBU levels
- 2 group embedding with ADD-ON card
- Auto format detection
- VI insertion
- EDH insertion
- Compatible with fiber connector panels
- Frame synchronization
- Video Proc amp
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

- Analog camera A/D converter
- Analog VTR A/D converter

Ordering information

Module:

ASC12: Component (near CCIR601) or RGB to SDI converter

Standard I/O:

BPL01_ASC12: I/O panel for ASC12

Fiber outputs:

- BPL01T_FC/PC_ASC12: I/O panel for ASC12 fiber transmitter on FC/PC
- BPL01T_SC_ASC12: I/O panel for ASC12 fiber transmitter on SC

CVBS output:

BPL01C_ASC12: I/O panel for ASC12 with CVBS output

$\mathbf{ }$ 0 0 SDI OUTPUT 1 0 SDI OUTPUT 2 0 SDI OUTPUT 3 \bigcirc SDI OUTPUT 4 (OPTIONAL FIBER OR CVBS OUTPUT) \bigcirc EXT SYNC INPUT \bigcirc Y/G INPUT \bigcirc PB/B INPUT \bigcirc PR/R INPUT 4

For fiber connectivity see www.axon.tv

Specifications

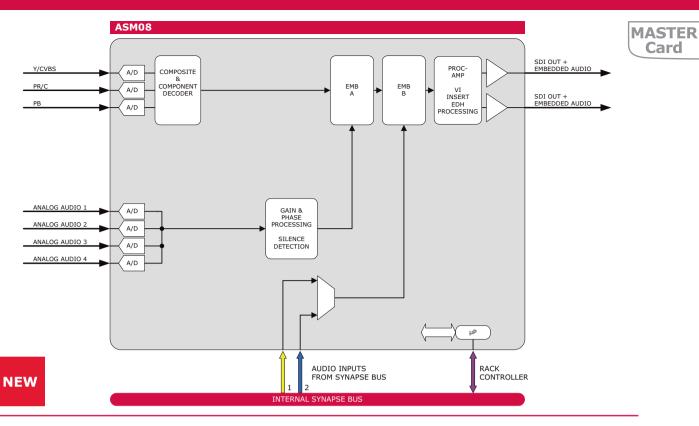
Video input		Serial video
Standard	625/50 and 525/59.94	Standard
Number of		
inputs	3	Number of
Impedance	75 Ohms	outputs
Return loss	> 32dB up to 5MHz	Connector
Luminance		Signal level
freq. resp.	Near CCIR601/656	DC offset
Stability	1%	Rise/fall time
Propagation		Overshoot
delay	3.81 µs	Return loss
Noise floor	< -57dB (Unified Weighted)	Jitter
Internal		
operation	12 Bit	Miscellaneou
Differential		Weight
delay	< 5ns	Operating
		temperature

Reference video input

Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 25dB to 10MHz

Serial video ou	itput
Standard	SMPTE 259M 525/59.95 or
	625/50
Number of	
outputs	4
Connector	BNC
Signal level	800mV nominal
OC offset	0V ±0.5V
Rise/fall time	900ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB to 270MHz
litter	< 0.1UI

us


Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Electrical	
Voltage	+24V to +30V
Power	<7 Watts

BPL01

ASM08 Analog to digital A/V converter with composite or component input capability

The ASM08 is an audio and video analog to digital converter. It accepts both component and composite analog video together with 4 channels of analog audio.

The ASM08 is the counter part of the SAM08.

- 12-bit video A/D conversion and decoding
- 20-bit audio A/D conversion and processing
- Auto detecting of PAL, NTSC or SECAM with correct reference input selection (SFR18 + SFR08)
- Automatic input gain adjustment
- Video Proc amp
- Noise reduction
- Hue adjustment
- Decoder Y-shaping and Y-peaking adjustment
- Adjustable analog audio reference levels of +15, +18 and +24dBu for 0 dBFS
- Adjustable audio gain +12 db to -60 dB
- Adjustable audio phase 0 deg or 180 deg
- Individual selection local analog audio input or ADD-ON audio input

- Second group embedding through ADD-ON card
- VI and WSS insertion
- EDH insertion
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

- A/V bridge to digitize an analog tape machine (Beta SP)
- VHS digitizer (+ embedded audio)
- Analog set-top box or IRD digitizer (+embedded audio)

Ordering information

Module:

ASM08: Analog to digital A/V bridge (12 bit) with SDI & embedded audio bypass / processing input

Standard I/O:

BPL12_ASM08: I/O panel for ASM08

Fiber outputs:

BPL12T_FC/PC_ASM08: I/O panel for ASM08 with fiber transmitter on FC/PC

BPL12T_SC_ASM08: I/O panel for ASM08 with fiber transmitter on SC

Fiber inputs:

- BPL12R_FC/PC_ASM08: I/O panel for ASM08 with fiber receiver on FC/PC
- BPL12R_SC_ASM08: I/O panel for ASM08 with fiber receiver on SC

CVBS Output:

BPL12C_ASM08: I/O panel for ASM08 with CVBS output

ic	₽
SDI OUTPUT 1	
DI OUTPUT 2 (OPTIONAL FIBER OR CVBS OUTPUT)	
/CVBS INPUT	
C/PR INPUT	\bigcirc
PB INPUT	0
	(
NALOG AUDIO INPUT	
	•••••

()BPL12

80MS

Specifications

Video input

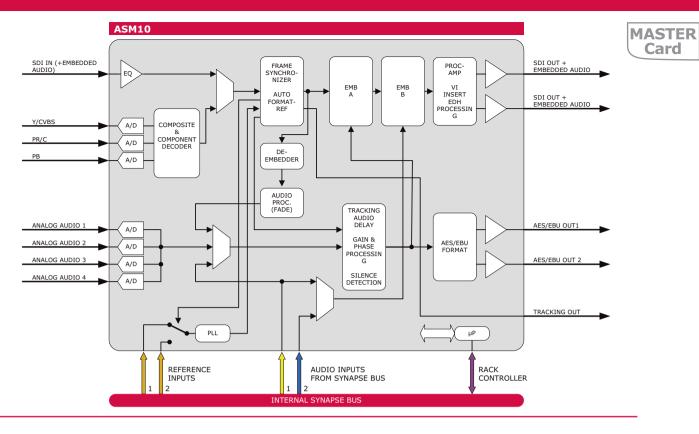
riado inpac	
Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of inputs	1
Impedance	75 Ohms
Return loss	> 35dB up to 10MHz
Frequency	
response	< ±0.25dB (100KHz to
	4.2MHz)
Differential gain	< ±0.5% typical
Differential	
phase	< ±0.2° typical
Noise floor	< -57dB RMS (black video,
	15KHz to 5MHz)
C/L gain	< ±0.5%
C/L delay	< ±9ns
Minimum delay	3 lines
Maximum delay	1 frame

Analog audio input

Туре	Balanced analog audio
Number of inputs	4
Connector	Removable terminal strip or
	female sub-D
Impedance	10k Ohms nominal (differential)
Sampling rate	48KHz
Signal level	OdB FS => 12dBu, 15dBu,
	18dBu or 24dBu
Level control	
range	+12dB to -60dB 0.25dB
	increments

Frequency	
response	$< \pm 0.1$ dB, 20Hz to 20kHz
	(broadcast quality)
Dynamic range	100dB @-60 dBFS
THD+N	< 0.002% (>96dB) @ 1kHz,
	-1dB FS
	< 0.002% (> 96dB) @ 20Hz
	to 20kHz, -1dB FS
CMRR	> 60dB at 1kHz

Serial video output


Standard	SMPTE 259M 525/59.95 or
	625/50
Number of	
outputs	2
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	900ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB to 270MHz
Jitter	< 0.1UI

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	9 Watts

ASM10 Analog to digital A/V (12 bit) bridge with SDI & embedded audio bypass/processing input

The ASM10 is an ultimate example of combined functions and features in a single module. The module bridges the analog world to the digital world. With composite or component video and Analog audio inputs, the ASM10 is ideal to digitize an analog tape machine to an SDI + embedded audio signal. It can also be found in a studio or transmission environment that is being upgraded to a central SDI + embedded audio single layer router. If an AES/EBU layer is required, the ASM10 provides this signal too. To preserve your investment after the infrastructure is digitized; it comes with an Analog input by-pass function and can be used as an SDI frame synchronizer and embedder. The ASM10 is the mirror function of the SAM10 (without frame sync).

- 12-bit video A/D conversion and decoding
- 24-bit audio A/D conversion and processing
- Frame synchronizer with smooth audio handling
- Delay mode (input lock)
- Individual H and V offset adjustment in pixel and lines (with respect to reference)
- Auto detecting of PAL, NTSC or SECAM with correct reference input selection (SFR18 + SFR08)
- Automatic input gain adjustment
- Video Proc amp
- Noise reduction

- Hue adjustment
- Decoder Y-shaping and Y-peaking adjustment
- Adjustable analog audio reference levels of +15, +18 and +24dBu for 0 dBFS
- Adjustable audio gain +12 db to -60 dB
- Adjustable audio phase 0 deg or 180 deg
- Individual selection of embedded domain audio, or local Analog audio input, or ADD-ON audio input
- Tracking audio delay on Analog audio inputs
- Second group embedding through ADD-ON card
- SDI frame sync mode
- Auto format detection
- VI and WSS insertion
- EDH insertion
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

- A/V bridge to digitize an analog tape machine (Beta SP)
- Mobile truck input capture card for free running audio and video sources
- Lines centre input capture card for free running audio and video sources
- VHS digitizer (+ embedded audio)
- Analog set-top box or IRD digitizer (+embedded audio)

Orderina information

Module:

ASM10: Analog to digital A/V bridge (12 bit) with SDI & embedded audio bypass / processing input

Standard I/O:

BPL12_ASM10: I/O panel for ASM10

Fiber outputs:

- BPL12T_FC/PC_ASM10: I/O panel for ASM10 with fiber transmitter on FC/PC
- BPL12T SC ASM10: I/O panel for ASM10 with fiber transmitter on SC

Fiber inputs:

- BPL12R_FC/PC_ASM10: I/O panel for ASM10 with fiber receiver on FC/PC
- BPL12R_SC_ASM10: I/O panel for ASM10 with fiber receiver on SC

CVBS output:

BPL12C_ASM10: I/O panel for ASM10 with

CVBS output

Specifications

Video input

video input	
Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	1
Impedance	75 Ohms
Return loss	> 35dB up to 10MHz
Frequency	
response	< ±0.25dB (100KHz to
	4.2MHz)
Differential gain	< ±0.5% typical
Differential	
phase	< ±0.2° typical
Noise floor	< -57dB RMS (black video,
	15KHz to 5MHz)
C/L gain	< ±0.5%
C/L delay	< ±9ns
Minimum delay	3 lines
Maximum delay	1 frame

Reference video input

Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 25dB to 10MHz

Analog audio input

Analog audio	Input
Туре	Balanced analog audio
Number of	
inputs	4
Connector	Removable terminal strip or
	female sub-D
Impedance	10k Ohms nominal
	(differential)
Sampling rate	48KHz
Signal level	OdB FS => 12dBu, 15dBu,
	18dBu or 24dBu
Level control	
range	+12dB to -60dB 0.25dB
	increments
Frequency	
response	$< \pm 0.1$ dB, 20Hz to 20kHz
	(broadcast quality)
Dynamic range	100dB @-60 dBFS
THD+N	< 0.002% (>96dB) @ 1kHz,
	-1dB FS
	< 0.002% (> 96dB) @ 20Hz
	to 20kHz, -1dB FS
CMRR	> 60dB at 1kHz

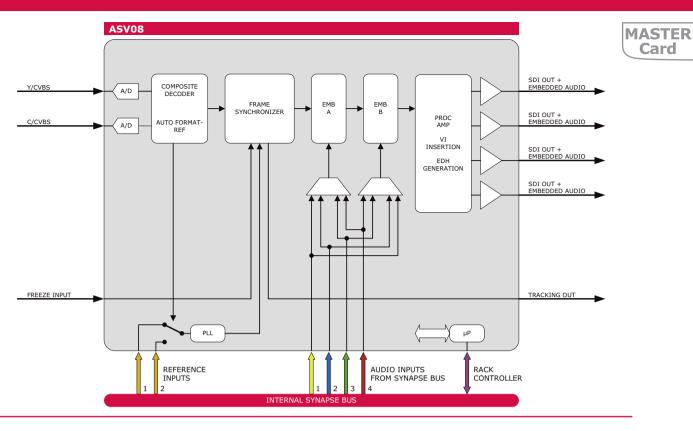
SDI INPUT (OPTIONAL FIBER INPUT) SDI OUTPUT 1 SDI OUTPUT 2 (OPTIONAL FIBER OR CVBS OUTPUT) Y/CVBS INPUT C/PR INPUT PB INPUT ANALOG AUDIO INPUT - AES/EBU OUTPUT

BPL12

AES audio output

Number of		
outputs	2	
Connector	sub-D (balanced)	
Resolution	24 bits	
Sampling rate	48KHz synchronous	
Minimum input/		
output delay	2.5ms	
Maximum input/	,	
output delay	1300 ms	

Serial video output


Standard	SMPTE 259M 525/59.95
	or 625/50
Number of	
outputs	2
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	900ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB to 270MHz
Jitter	< 0.1UI

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm
	(HxWxD)

Miscellaneous

Voltage	+24V to +30V
Power	9 Watts

ASV08 Standard quality composite decoder with 4 SDI outputs

The ASV08 is a very popular standard quality decoder with time base corrector. The stable operation attained under poor conditions make the ASV08 a real workhorse. It can operate in places where other decoders fail to lock.

- "Eat it all" card with a very tolerant input decoder
- Selectable lock mode (TV, Normal VTR mode)
- TBC through local quartz reference (free running mode)
- Automatic Gain Control (AGC)
- Compatible with PAL, NTSC and SECAM
- 2 inputs with auto-detection capability (or YC mode)
- Frame synchronizer
- Full frame adjustable output phase with respect to reference in sample increments
- Auto detecting of PAL or NTSC with correct reference input selection (SFR18 + SFR08)
- Transparent or blanked vertical interval
- Variable or automatic input gain
- Adjustable HUE phase
- Proc-Amp
- VI insertion
- EDH insertion
- 2 Group embedder with tracking pulse output for: ADC24, ADC20, DIO24, DIO48, etc.
- Selectable panic or manual freeze (GPI)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

- VTR composite decoder/ synchronizer
- VTR digitizer with embedded audio (requires an ADC20)
- Helicopter RF feed digitizer and TBC

Ordering information Module:

 ASV08: Standard quality composite decoder with 4 SDI outputs

Standard I/O:

BPL01_ASV08:
 I/O panel for ASV08

Fiber outputs:

- BPLOT_FC/PC_ASV08:
 I/O panel for ASV08 with fiber transmitter on FC/PC
- BPLOT_SC_ASV08: I/O panel for ASV08 with fiber transmitter on SC

CVBS output:

BPL01C_ASV08:
 I/O panel for ASV08 with
 CVBS output

SDI OUTPUT 1
SDI OUTPUT 2
SDI OUTPUT 3
SDI OUTPUT 4 (OPTIONAL FIBER OR CVBS OUTPUT)
CVBS INPUT 1 / Y
CVBS INPUT 2 / C
TRACKING OUTPUT
FREEZE INPUT

For fiber connectivity see www.axon.tv

Specifications

Video input		Seria
Standard	PAL (ITU624-4), NTSC	Stan
	(SMPTE 170M), SECAM	
Number of		Num
inputs	1	outp
Impedance	75 Ohms	Conn
Return loss	> 39dB up to 10MHz	Signa
Frequency		DC of
response	< ±0.25dB (100KHz to	Rise/
	4.2MHz)	Over
Differential gain	< ±2% typical	Retu
Differential		Jitter
phase	< ±0.5° typical	
Noise floor	< -57dB (Unified weighted)	Misc
C/L gain	< ±0.5%	Weig
C/L delay	< ±9ns	Oper
Minimum delay	3 lines	temp
Maximum delay	1 frame	Dime

Reference video input

Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 25dB to 10MHz

Serial video output

Standard	SMPTE 259M 525/59.95 or
	625/50
Number of	
outputs	2
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	900ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB to 270MHz
Jitter	< 0.1UI

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Electrical		
Voltage	+24V to +30V	
Power	<6 Watts	

4

 \bigcirc

0

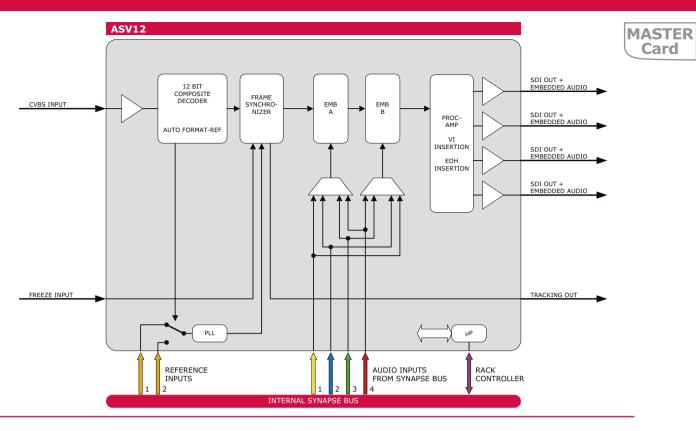
0

0

0

0

 \bigcirc


 \bigcirc

 \bigcirc

 (\uparrow)

BPL01

ASV12 High-end CVBS decoder (12 bit) with 5 line comb filter, frame synchronizer and 2 group embedder

The ASV12 is an analog to digital converter which converts analog composite signals to serial digital (SDI). The ASV12 has a frame synchronizer, video proc-amp, VI-inserter and an adaptive 5-line comb filter for signal enhancement. A 2 group embedder is part of the internal processing core and can be enabled by using an ADD-ON card like the ADC20/24 and DIO24.

- Auto detecting of PAL or NTSC with correct reference input selection (SFR18 + SFR08)
- Frame synchronizer
- Full frame adjustable output phase with respect to reference in sample increments
- ANC data blanking
- Adaptive or narrow Comb filter
- Automatic color control
- Hue adjustment
- Proc-Amp
 - Y gain
 - C gain
 - Y Black
 - Cb Black
 - Cr Black
- PAL averaging
- VI insertion

- EDH insertion
- 2 Group embedder with tracking pulse output for: ADC24, ADC20, DIO24 and DIO48
- Variable, automatic or fixed input gain
- Selectable NTSC setup removal
- GPI Freeze input
- Selectable panic freeze or manual freeze
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

- High quality decoding in MCR input lines (together with timing correction)
- CVBS and analog audio decoding and embedding (requires an additional ADC20)

Ordering information

Module:

ASV12: High-end CVBS decoder (12 bit) with 5 line comb filter and frame synchronizer and 2 group embedder

Standard I/O:

BPL01_ASV12: I/O panel for ASV12

Fiber outputs:

BPL01T_FC/PC_ASV12: I/O panel for ASV12 with fiber transmitter on FC/PC

BPL01T_SC_ASV12: I/O panel for ASV12 with fiber transmitter on SC

CVBS output:

BPL01C ASV12: I/O panel for ASV12 with CVBS output

	÷
	0
SDI OUTPUT 1	0
SDI OUTPUT 2	0
SDI OUTPUT 3	0
SDI OUTPUT 4 (OPTIONAL FIBER OR CVBS OUTPUT)	0
CVBS INPUT	0
	0
TRACKING OUTPUT	0
FREEZE INPUT	0
	Optimized in the second sec
For fiber connectivity see www.axon.tv	BPL01

Specifications

Reference video input

Standard

Number of

Connector Signal level

Impedance

Return loss

inputs

Video input	
Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	1
Impedance	75 Ohms
Return loss	> 35dB up to 10MHz
Frequency	
response	< ±0.25dB (100KHz to
	4.2MHz)
Differential gain	$< \pm 0.5\%$ typical
Differential	
phase	< ±0.2° typical
Noise floor	< -57dB RMS (black video,
	15KHz to 5MHz)
C/L gain	< ±0.5%
C/L delay	< ±9ns
Minimum delay	3 lines
Maximum delay	1 frame

PAL (ITU624-4), NTSC (SMPTE 170M)

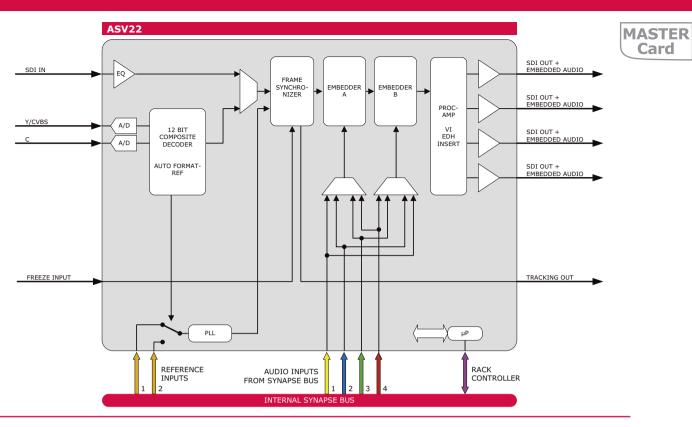
1 on SFR04 BNC

1V nominal

> 25dB to 10MHz

75 Ohms

2 on SFR18, 2 on SFR08,


Serial video output		
Standard	SMPTE 259M 525/59.95	
	or 625/50	
Number of		
outputs	2	
Connector	BNC	
Signal level	800mV nominal	
DC offset	0V ±0.5V	
Rise/fall time	900ps nominal	
Overshoot	< 10% of amplitude	
Return loss	> 15dB to 270MHz	
Jitter	< 0.1UI	
Miscellaneous		
Weight	Approx. 250g	
- ··		

Weight	Applox: 200g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

+24V to +30V
<6 Watts

175

ASV22 High-end CVBS decoder with 5 line comb filter and frame synchronizer and SDI bypass input

The ASV22 is a composite decoder/frame synchronizer with ADD-ON embedding functionality. On top of the features listed with the ASV12, the ASV22 has an SDI bypass input. This card can also combine horizontal and vertical intervals of the analog and digital (SDI) inputs and is the ideal partner for dynamically changing input requirements in a lines center or OB-Van application.

This card combines the ASV12 and SFS11 into one platform.

Auto detecting of PAL or NTSC with correct reference input selection (SFR18 + SFR08)

Card

- Frame synchronizer
- SDI input for by-pass or combine functions.
- Full frame adjustable output phase with respect to reference in sample increments
- ANC data blanking
- Proc-Amp
- Y gain
- C gain
- Y Black
- Cb Black
- Cr Black
- VI insertion
- EDH detection, insertion
- 2 Group embedder with tracking pulse output for: ADC24, ADC20, DIO24 and others
- Variable, automatic or fixed input gain
- Selectable NTSC setup removal
- GPI Freeze input
- Selectable panic freeze or manual freeze
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

Applications

- OB Truck input synchronizer with SDI, YC and CVBS inputs.
- High-end CVBS legacy decoding with SDI synchronizer grow path
- Lines center

Ordering information

Module:

ASV22: High-end CVBS decoder (12 bit) with 5 line comb filter and frame synchronizer and SDI bypass input

Standard I/O:

BPL01_ASV22: I/O panel for ASV22

BPX01_ASV22: I/O panel for ASV22 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_ASV22: I/O panel for ASV22 with fiber transmitter on FC/PC
- BPL01T_SC_ASV22: I/O panel for ASV22 with fiber transmitter on SC

Fiber inputs:

BPL01R_FC/PC_ASV22: I/O panel for ASV22 with fiber receiver on FC/PC

BPL01R_SC_ASV22: I/O panel for ASV22 with fiber receiver on SC

CVBS output:

BPL01C_ASV22: I/O panel for ASV22 with CVBS output

		•
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	0
SDI OUTPUT 1	\bigcirc	0
SDI OUTPUT 2	\bigcirc	
SDI OUTPUT 3 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	\odot
SDI OUTPUT 4	\bigcirc	\bigcirc
Y/CVBS INPUT	Ô	0
C INPUT	\bigcirc	0
TRACKING OUTPUT	Ó	
FREEZE INPUT	\bigcirc	••••••••••••••••••••••••••••••••••••••
	{	{
For fiber connectivity see www.axon.tv	BPL01	BPX01

For fiber connectivity see www.axon.tv

Specifications

Serial video input

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	1
Equalization	Automatic to 300m
	@ 270Mb/s with Belden
	1694A or equivalent cable
Return loss	> 15dB up to 270MHz

Innut Video

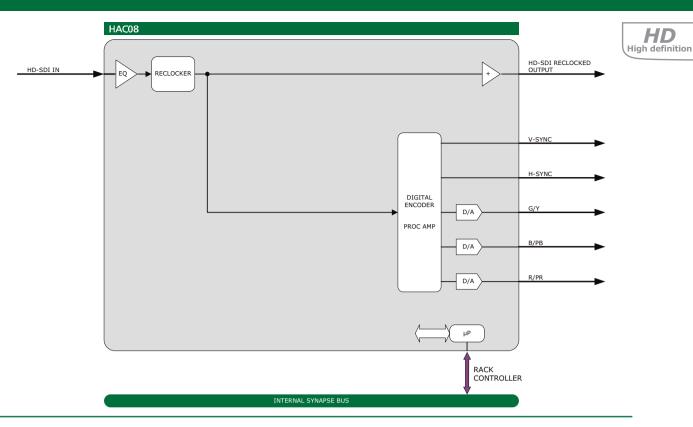
Video Input		
Standard	PAL (ITU624-4),	
	NTSC (SMPTE 170M)	
Number of		
inputs	1	
Impedance	75 Ohms	
Return loss	> 35dB up to 10MHz	
Frequency		
response	< ±0.25dB (100KHz to	
	4.2MHz)	
Differential gain	< ±0.5% typical	
Differential		
phase	< ±0.2° typical	
Noise floor	< -57dB RMS (black video,	
	15KHz to 5MHz)	
C/L gain	< ±0.5%	
C/L delay	< ±9ns	
Minimum delay	3 lines	
Maximum delay	1 frame	

Reference video input

	•
Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
Inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal Level	1V nominal
Impedance	75 Ohms
Return loss	> 25dB to 10MHz

Serial video output

Standard	SMPTE 259M 525/59.95	
	or 625/50	
Number of		
outputs	2	
Connector	BNC	
Signal level	800mV nominal	
DC offset	0V ±0.5V	
Rise/fall time	900ps nominal	
Overshoot	< 10% of amplitude	
Return loss	> 15dB to 270MHz	
Jitter	< 0.1UI	


Miscellaneous

Weight	Approx. 250g	
Operating		
temperature	0 °C to +50 °C	
Dimensions	137 x 296 x 20 mm (HxWxD)	

Electrical

Voltage	+24V to +30V
Power	6 Watts

VIDEO D/A CONVERSION

HAC08 HD/SD monitoring D/A converter (component outputs)

The HAC08 is a monitoring HD/SD-SDI to analog component converter with a reclocked HD/SD-SDI output. It can output HD/SD RGB and YPrPb signals.

- HD/SD-SDI input
- HD/SD-SDI reclocked output
- **525/59.94**
- 625/50
- 720p 59.94/50/30/25/24
- 1035i/60
- 1080i 59.94/50
- 1080p 30/25/24
- Tri-Level sync, V-sync and H-sync output for HD standards
- Proc. Amp
- Selectable sync on green
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) on I/O panel

- HD/SD-SDI to analog CRT conversion
- HD-SDI to Tri-level sync conversion

Ordering information

Module:

HAC08: HD/SD monitoring D/A converter (component outputs)

Standard I/O:

BPH01_HAC08: I/O panel for HAC08

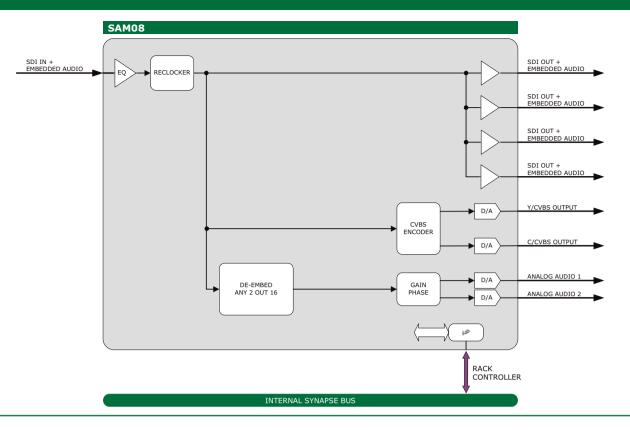
Fiber inputs:

- BPH01R_FC/PC_HAC08: I/O panel for HAC08 with fiber receiver on FC/PC
- BPH01R_SC_HAC08: I/O panel for HAC08 with fiber receiver on SC

HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)	0
HD/SD-SDI RECLOCKED OUTPUT 1	0
	0
TRI-LEVEL SYNC OUPUT	0
V-SYNC OUPUT	0
H-SYNC OUPUT	\bigcirc
G/Y OUPUT	0
B/PB OUPUT	\bigcirc
R/PR OUPUT	0
	÷

For fiber connectivity see www.axon.tv

Specifications


B/F

HD/SD serial	l video input	Analog video o	output
HD standard	SMPTE 292 1080i/59.94,	HD standard	SMPTE 274M, 296M
	1080i/50, 720p/59.94,	SD standard	SMPTE 253M
	720p/50	Outputs	6 BNC 3 x video 2 x Sync H,
SD standard	625/50 CCIR 601R or		V 1 x Tri-level sync
	525/59.94 SMPTE 259M-C	Signal level	1V p-p (YPrPb/RGB+S)
	(270Mb/s) with SMPTE 272M	Impedance	75 Ohms
	embedded audio	Sync	300 mV/ 600 mV
Equalization	Automatic to 100m		(Tri-level = 600)
	@ 1.5Gb/s with Belden	DC offset Y-GBR	100 mV max
	1694A or equivalent cable.		
Return loss	> 15dB up to 1.5GHz	Miscellaneous	
		Weight	Approx. 250g
HD/SD serial	reclocked output	Operating	
HD standard	SMPTE 292 1080i/59.94,	temperature	0 °C to +50 °C
	1080i/50, 720p/59.94,	Dimensions	137 x 296 x 20 mm (HxWxD)
	720p/50		
	625/50 CCIR 601R or	Electrical	
	525/59.94 SMPTE 259M-C	Voltage	+24V to +30V
	(270Mb/s)	Power	<7 Watts
SD standard	with SMPTE 272M embedded		
	audio		
Signal level	800mV nominal		
DC offset	0V ±0.5V		
Rise and			
fall time	200ps nominal for HD,		
	750ps nominal for SD		
Overshoot	< 10% of amplitude		
Return loss	> 15dB up to 1.0Gb/s,		
	> 10dB up to 1.5Gb/s		

4

BPH01

SAM08 Distribution amplifier with monitoring analog audio and video outputs

The SAM08 is a relocking DA with 4 SDI outputs and monitoring quality composite and Analog audio outputs. Its main application is as a one to four SDI distribution amplifier with 2 analog composite and 2 Analog audio outputs. The Analog audio outputs can be configured to de-embed any 2 channels out of the 16 channels of audio that are available in the SDI domain. The analog audio is routed to the lower BNC-outputs of the connector panel and is unbalanced on default. The connector panel BPA09 provides a balanced audio signal up to +24dBu.

- 4 reclocked SDI outputs
- 2 composite or Y+C Analog video outputs
- 2 Analog audio outputs (2 out of any embedded 16 channels)
- Unbalanced audio outputs with BPL01 (+6 dBu max)
- Active low output Z balanced audio output with BPA9 (max 24dBu in 600 Ohms)
- Adjustable audio gain (in 0.25dB) and phase (0-180 deg)
- Selected audio channels can be summed (MONO)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) on I/O panel

Applications

Cost effective audio and video monitoring

Ordering information

Module:

SAM08: Distribution amplifier with monitoring analog audio and video outputs

Standard I/O:

BPL01_SAM08: I/O panel for SAM08

BPA09_SAM08: I/O panel with balanced analog audio outputs for SAM08

Fiber inputs:

- BPL01R_FC/PC_SAM08: I/O panel for SAM08 with fiber receiver on FC/PC
- BPL01R_SC_SAM08: I/O panel for SAM08 with fiber receiver on SC

SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc
SDI RECLOCKED OUTPUT 1		\bigcirc
SDI RECLOCKED OUTPUT 2		\bigcirc
SDI RECLOCKED OUTPUT 3		\bigcirc
SDI RECLOCKED OUTPUT 4		\bigcirc
CVBS/Y OUTPUT		\bigcirc
CVBS/C OUTPUT		\bigcirc
ANALOG AUDIO OUTPUT 1		\bigcirc
ANALOG AUDIO OUTPUT 2		\bigcirc
	*	*

Specifications

Signal level

Impedance

Return loss

Frequency

response

1V nominal

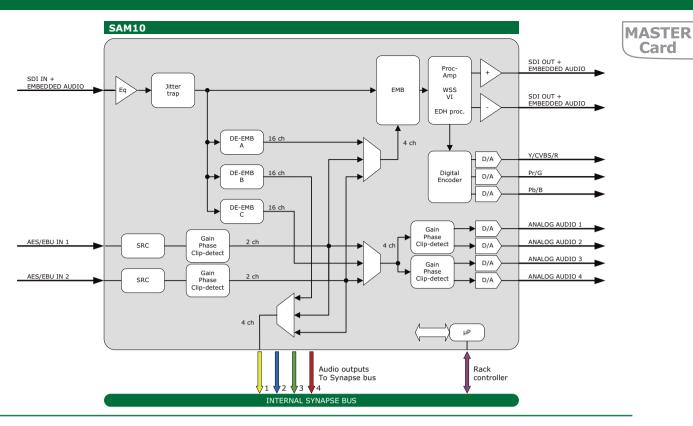
> 35dB to 10MHz

0.5dB to 4.5 MHz

75 Ohms

Serial video in	•	Differential gain	\$ 0.070
Standard	625/50 or 525/59.94 SMPTE	Differential	
	259M-C (270Mb/s) with	phase	< 0.7°
	SMPTE 272M embedded audio	SNR	> 75dB
Number of input	s 1		
Equalization	Automatic to 300m	Analog audio o	output
	@ 270Mb/s with Belden	Туре	Balanced analog audio
	1694A or equivalent cable		(unbalanced with BPL01)
Return loss	> 15dB up to 270MHz	Number of	
		outputs	2
SD serial vide	eo output	Connector	Removable terminal strips
Standard	625/50 or 525/59.94 SMPTE		(BNC with BPL01)
	259M-C (270Mb/s) with	Impedance	50 Ohms balanced
	SMPTE 272M embedded audio	Signal level	+24dBu max (+ 6 dBu on
Number of			BNC output)
outputs	4	Frequency	
Signal level	800mV nominal	response	< ±0.1dB (20Hz to 20kHz)
DC offset	0V ±0.5V	Gain mismatch	< 0.5 dB @997Hz, -20dBFS
Rise/fall time	800ps nominal		Multi channel
Overshoot	< 10% of amplitude	Dynamic range	>87 dB @ -60dBFS
Return loss	> 15dB up to 270MHz	THD+N	< 85dB @ 1kHz, -1dBFS
		Crosstalk	< -85dB (20Hz to 20kHz)
Analog video	output	DC offset	< ±30mV
Standard	PAL (ITU624-4) or NTSC		
	(SMPTE 170M)	Miscellaneous	
Number of		Weight	Approx. 250g
outputs	2	Operating	
Connector	BNC	temperature	0 °C to +50 °C

e	< ±0.1dB (20Hz to 20kHz)
smatch	< 0.5 dB @997Hz, -20dBFS
	Multi channel
c range	>87 dB @ -60dBFS
	< 85dB @ 1kHz, -1dBFS
lk	< -85dB (20Hz to 20kHz)
et	< ±30mV


Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

4V to +30V
Watts

BPA09

BPL01

SAM10 Digital to analog A/V bridge with SDI processed outputs

The SAM10 is another ultimate example of combined functions and features in a single module. The module bridges the digital world to the analog world. With composite or component video and analog audio outputs, the SAM10 is the ideal card to source an analog tape machine from an SDI + embedded audio or digital audio signal. It can also be found in a studio or transmission environment that is being upgraded to a central SDI + embedded audio single layer router. If an AES/EBU layer is required, the SAM10 accepts this signal too. To preserve your investment after the infrastructure is digitized; it comes with an SDI by-pass function and can be used as an SDI de-embedder. The SAM10 is the mirror function of the ASM10.

- 12-bit video D/A conversion and encoding
- 24-bit audio D/A conversion and processing
- CVBS or Component Analog video outputs
- Adjustable chroma filter
 - 1.3MHz
 - 0.65Mhz
 - 1.0Mhz
 - 2.0Mhz
 - 3.0Mhz
 - CIF
 - QCIF

Sub-carrier phase adjustment (-89 to 89 deg)

Card

- Hue adjustment (-22 to 22deg)
- DAC gain (0.99 to 1.14 x)
- Selectable pedestal
- Proc-Amp
- Y gain
- C gain
- Y-Black
- C-Black
- Jitter trap for maximum isolation of SDI input
- Video Index and WSS insertion
- Embedding function into SDI output
- De-embedding function from SDI input to local analog outputs, bus outputs and local embedder
- Analog audio output @0dBFS can be selected between +12, +15, +18 and +14dBu
- Analog audio output can be any channel of the de-embedder or AES/EBU source
- ADD-ON audio output can be any channel of the de-embedder or AES/EBU source
- Individual AES/EBU input gain and Analog audio output gain.
- SDI by-pass mode
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

SAM10

Applications

- Connecting analog legacy equipment to an SDI-Embedded infrastructure
- Converting a analog VTR to the digital world (together with an ASM10)

Ordering information

Module:

SAM10: Digital to analog A/V bridge with SDI processed outputs

Standard I/O:

BPL12_SAM10: I/O panel for SAM10

Fiber outputs:

- BPL12T_FC/PC_SAM10: I/O panel for SAM10 with fiber transmitter on FC/PC
- BPL12T_SC_SAM10: I/O panel for SAM10 with fiber transmitter on SC

Fiber inputs:

- BPL12R_FC/PC_SAM10: I/O panel for SAM10 with fiber receiver on FC/PC
- BPL12R SC SAM10: I/O panel for SAM10 with fiber receiver on SC

Specifications	
----------------	--

Serial video input Sta

Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	
Return loss	> 15dB up to 270MHz	

SD serial video output

2

625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio

800mV nominal

Number of outputs Signal level DC offs

Standard

DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz
AES input	
Inputs	2
Connector	26 pins female sub-D
	(balanced)
Standard	AES-1992 for balanced
	synchronous or
	asynchronous PCM/AES
Input level	2V to 7V for balanced
	operation
Coupling	Transformer
Impedance	110 Ohms
Sampling	
frequency	32kHz to 96kHz or 48kHz
	locked to video SRC=off

Analog video output

-	•
Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M)
Number of	
outputs	3
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

SDI INPUT (OPTIONAL FIBER INPUT) SDI OUTPUT 1 SDI OUTPUT 2 (OPTIONAL FIBER OUTPUT) Y/CVBS/R OUTPUT

PR/G OUTPUT

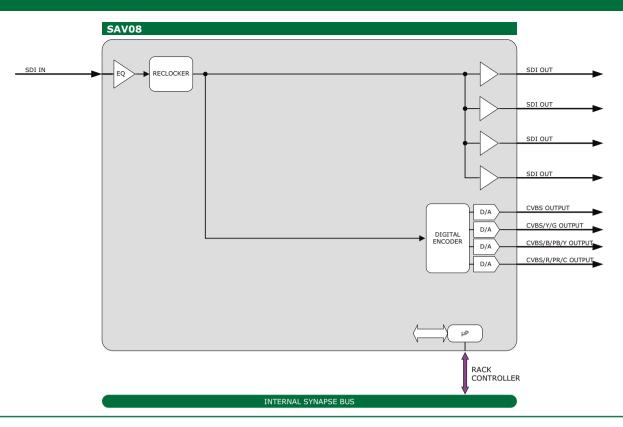
PB/B OUTPUT

AES/EBU INPUT - ANALOG AUDIO OUTPUT

BPL12

SAM10

Analog audio output


-	-
Туре	Balanced analog audio
Number of	
outputs	4 per channel (8 in single
	channel mode)
Connector	26 pins female sub-D
Impedance	50 Ohms balanced
Signal level	OdBFS => 12dBu, 15dBu,
	18dBu or 24dBu
Frequency	
response	$<\pm0.05$ dB (20Hz to 20kHz)
Gain mismatch	< 0.25 dB @997Hz, -20dBFS
	Multi channel
THD+N	< 92dB @ 1kHz, -1dBFS
Crosstalk	< -100dB (20Hz to 20kHz)
Dynamic range	> 97dB @-60dBFS

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Flectrical

Voltage	+24V to +30V
Power	<13 Watts

SAV08 Distribution amplifier with Analog video outputs

The SAV08 is an SDI to composite, component and Y/C converter with a built-in SDI distribution amplifier. Its main application is a one to four SDI distribution amplifier with 4 analog outputs. It can also be used as a large router preview card or a generic monitoring D/A.

- 4 reclocked SDI outputs
- 4 configurable Analog video outputs
 - 4 composite outputs
 - 1 composite and YC output
 - 1 composite and RGB output
 - 1 composite and YPrPb output
- Selectable vertical interval blanking
- 3 Y-Filters
- Normal
- Low pass
- Notch
- 4 C-Filters
 - 1.3 MHz
 - 0.65 MHz
 - 1.0 MHz
 - 2.0 MHz
- Selectable NTSC setup removal
- Y level adjustable for SMPTE, BetaCam
- Adjustable PrPb levels (700/1000mV)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) on I/O panel

Applications

- Pre-routing DA with monitoring output
- Generic SDI Distribution with preview output

Ordering information

Module:

 SAV08: Distribution amplifier with analog video outputs

Standard I/O:

BPL01_SAV08:
 I/O panel for SAV08

 BPX01_SAV08:
 I/O panel for SAV08 with relay bypass

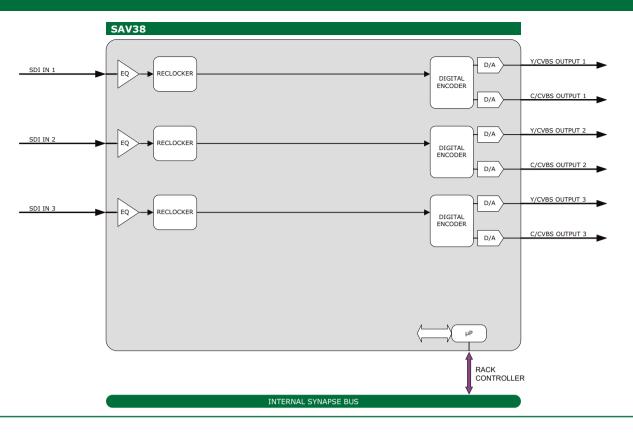
Fiber inputs:

- BPL01R_FC/PC_SAV08: I/O panel for SAV08 with fiber receiver on FC/PC
- BPL01R_SC_SAV08: I/O panel for SAV08 with fiber receiver on SC

SDI INPUT (OPTIONAL FIBER INPUT)		
SDI OUTPUT 1	\bigcirc	\bigcirc
SDI OUTPUT 2	\bigcirc	\bigcirc
SDI OUTPUT 3	Ó	\bigcirc
SDI OUTPUT 4	\bigcirc	\bigcirc
CVBS OUTPUT 1	\bigcirc	\bigcirc
CVBS/Y/G OUTPUT 2	\bigcirc	\bigcirc
CVBS/B/PB/Y OUTPUT 3	Ó	\bigcirc
CVBS/R/PR/C OUTPUT 4	\bigcirc	O
	e	Ð
For fiber connectivity see www.axon.tv	BPL01	BPX01

Specifications

Serial video in	nput	Analog video	output
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4) or NTSC
	259M-C (270Mb/s) with		(SMPTE 170M), Component,
	SMPTE 272M embedded audio		YC and RGB
Number of		Number of	
inputs	1	outputs	4
Equalization	Automatic to 300m	Connector	BNC
	@ 270Mb/s with Belden	Signal level	1V nominal
	1694A or equivalent cable	Impedance	75 Ohms
	150m with BPX03	Return loss	> 35dB to 10MHz
Return loss	> 20dB up to 270MHz	Frequency	
		response	0.5dB to 4.5 MHz
SD serial vide	o output	Differential gain	n < 0.6%
Standard	625/50 or 525/59.94 SMPTE	Differential	
	259M-C (270Mb/s) with	phase	< 0.7°
	SMPTE 272M embedded audio	SNR	> 75dB
Number of			
outputs	4	Miscellaneous	5
Signal level	800mV nominal	Weight	Approx. 250g
DC offset	0V ±0.5V	Operating	
Rise/fall time	520ps nominal	temperature	0 °C to +50 °C
Overshoot	< 10% of amplitude	Dimensions	137 x 296 x 20 mm (HxWxD)
Return loss	> 18dB up to 270MHz		
Jitter	< 600ps 10Hz HPF	Electrical	
		Voltage	+24V to +30V


11

relay bypass

Marce

<6 Watts

Power

SAV38 Triple monitoring D/A converter (composite or Y/C outputs)

The SAV38 is a triple channel monitoring D/A converter. The three individual channels can be used for dual composite or Y/C output signals. By introducing this triplet, AXON is able to provide an extreme high density monitoring system with up to 12 channels in one rack unit (SFR04), 24 channels in a SFR08 and 54 channels in four rack units (SFR18).

- 3 individual SDI inputs
- Selectable individual standards
 - NTSC
 - NTSC-J
 - PAL-BDGHI
- 3 dual composite or Y/C outputs
- Selectable vertical interval blanking
- Selectable NTSC set-up removal
- Internal colorbar (only when SDI is connected)
- Input status monitoring
- EDH status monitoring
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 3 fiber inputs (replacing 3 SDI inputs) on I/O panel

Applications

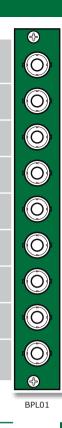
 High density monitor wall applications

Ordering information

Module:

SAV38: Triple monitoring D/A converter (composite or Y/C outputs)

Standard I/O:


BPL01_SAV38: I/O panel for SAV38

Fiber inputs:

BPL01R3_FC/PC_SAV38: I/O panel for SAV38 with 3 fiber receivers on FC/PC

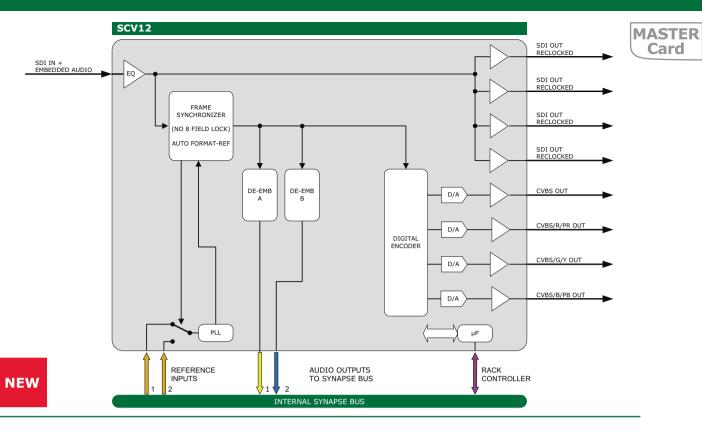
BPL01R3_SC_SAV38: I/O panel for SAV38 with 3 fiber receivers on SC

SDI INPUT 1 (OPTIONAL FIBER INPUT)
Y/CVBS OUTPUT
C/CVBS OUTPUT
SDI INPUT 2 (OPTIONAL FIBER INPUT)
Y/CVBS OUTPUT
C/CVBS OUTPUT
SDI INPUT 3 (OPTIONAL FIBER INPUT)
Y/CVBS OUTPUT
C/CVBS OUTPUT

For fiber connectivity see www.axon.tv

Specifications

Serial video	input	Miscellaneou	s
Standard	625/50 or 525/59.94 SMPTE	Weight	Appr
	259M-C (270Mb/s) with	Operating	
	SMPTE 272M embedded au-	temperature	0 °C
	dio	Dimensions	137 :
Number of			
inputs	3	Electrical	
Equalization	Automatic to 300m	Voltage	+24\
	@ 270Mb/s with Belden	Power	<8 V
	1694A or equivalent cable		
Return loss	> 20dB up to 270MHz		


Analog video output

Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M), YC
Number of	
outputs	6 (3 x 2)
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

SAV38

rox. 250g C to +50 °C x 296 x 20 mm (HxWxD)

Voltage	+24V to +30V
Power	<8 Watts

SCV12 High-end 12 bit SDI to composite/component/RGB encoder with frame synchronizer

The SCV12 is an SDI to Composite or Component or RGB converter with frame synchronizer or video delay and video proc-amp. The encoder has a very flexible timing circuit that allows for multiple output phase options. In addition, it has an 8 channel de-embedding function in combination with 1 or 2 ADD-ON cards. The synchronizer function can be used to synchronize a non-synchronous signal or to compensate a delay. The unit has four composite outputs in CVBS mode. The black & burst reference is connected through the central gen-lock input of the SFR18, SFR08 or SFR04.

- 12 bit encoding
- 4 reclocked SDI and 4 composite video outputs
- Frame synchronizer
- Fully adjustable output delay up to 1 frame (with respect to the SDI input or B&B reference in 1/16 pixel increments)
- Adjustable Sub-H phase or sub carrier reference phase in between -89 and 89 degrees
- Colorbar generation adjustable for 100%, 75%
- Auto detecting of format (525/625) with correct reference input selection (SFR08 - SFR18)
- Selectable vertical interval blanking (line 6 to 23)
- Selectable NTSC setup
- Proc-amp
- EDH detection
- Selectable panic freeze or manual freeze
- 2 Group de-embedder in combination with DAC24, DAC20 or DAS24
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) on I/O panel

Applications

 Hi-end pre-transmission encoding in analog and cable TV transmitters

Ordering information

Module:

 SCV12: High-end 12 bit SDI to composite encoder with frame synchronizer

Standard I/O:

- BPL01_SCV12: I/O panel for SCV12
- BPX01_SCV12: I/O panel for SCV12 with relay bypass

Fiber inputs:

- BPL01R_FC/PC_SCV12:
 I/O panel for SCV12 with fiber receiver on FC/PC
- BPL01R_SC_SCV12: I/O panel for SCV12 with fiber receiver on SC

		\sim
SDI INPUT (OPTIONAL FIBER INPUT)	Ô	0
SDI OUTPUT 1	\bigcirc	Ó
SDI OUTPUT 2	\bigcirc	\bigcirc
SDI OUTPUT 3	\bigcirc	Ô
SDI OUTPUT 4	\bigcirc	\bigcirc
CVBS OUTPUT 1	\bigcirc	\bigcirc
CVBS/G/Y OUTPUT 2	\bigcirc	\bigcirc
CVBS/B/PB OUTPUT 3	\bigcirc	\bigcirc
CVBS/R/PR OUTPUT 4	\bigcirc	\bigcirc
	€	€
For fiber connectivity see www.axon.tv	BPL01	BPX01

Specifications

Serial video in	put	Frequency	
Standard	625/50 or 525/59.94 SMPTE	response	0.5dB to 4.5 MHz
	259M-C (270Mb/s) with	Differential gain	< 0.6%
	SMPTE 272M embedded audio	Differential	
Number of inputs	1	phase	< 0.7°
Equalization	Automatic to 300m @	SNR	> 75dB
	270Mb/s with Belden		
	1694A or equivalent cable	Analog video o	utput CVBS mode
Return loss	> 15dB up to 270MHz	Standard	PAL (ITU624-4) or NTSC
			(SMPTE 170M)
SD serial video	o output	Number of	
Standard	625/50 or 525/59.94 SMPTE	outputs	4
	259M-C (270Mb/s) with	Connector	BNC
	SMPTE 272M embedded audio	Signal level	1V nominal
Number of		Impedance	75 Ohms
outputs	4	Return loss	> 28dB to 10MHz
Signal level	800mV nominal	Frequency	
DC offset	0V +/- 0.5V	response	0.5dB to 4.5 MHz
Rise/fall time	800ps nominal	Differential gain	< 0.6%
Overshoot	< 10% of amplitude	Differential	
Return loss	> 15dB up to 270MHz	phase	< 0.7°
		SNR	> 75dB
Analog video d	output component		
or RGB mode		Miscellaneous	
Standard	Component and RGB	Weight	Approx. 250g

Operating

temperature

Dimensions

Electrical

Voltage

Power

0 °C to +50 °C

+24V to +30V

<12 Watts

137 x 296 x 20 mm (HxWxD)

+ composite

1V nominal

> 28dB to 10MHz

75 Ohms

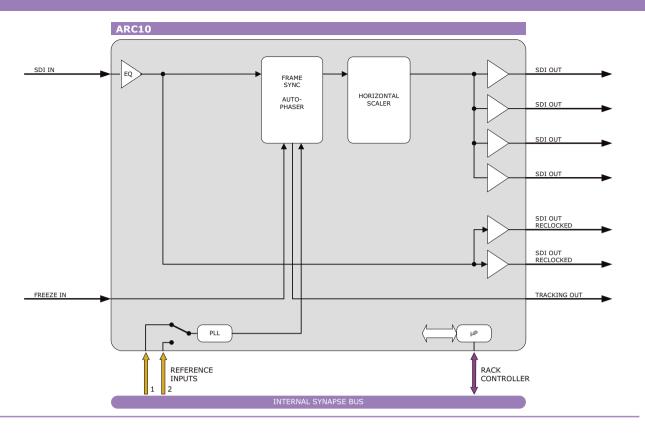
3+sync

BNC

Number of

Connector Signal level

Impedance


Return loss

outputs

A

A

relay bypass

ARC10 Basic aspect ratio converter, 10-bit, horizontal scaling only

The ARC10 is a basic aspect ratio converter that provides horizontal scaling, synchronization and Video Index Insertion. The ARC10 is compatible with a wide range of 525 and 625 TV formats. The horizontal scaling functions enable a "pan-scan" or pillar box function when going from 16:9 to 4:3 and vice versa. The scaling is variable and therefore the picture geometry can be manipulated into non-standard aspect ratios. The unit also provides a horizontal picture or position panning. The ARC10 is capable of inserting Video Index data performed in accordance with the SMPTE Recommended Practice RP186. The ARC10 supports Class 1.1.

- 10-bit broadcast quality horizontal scaling with 12 tap filtering
- Pillar box' and `pan-scan' modes
- Synchronizer mode
- Transparent blanking
- Panic freeze function
- Video Index inserting
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

video processing

BPL01

BPX01

Applications

- Pan and scan aspect ratio conversion
- Pillar box aspect ratio conversion

Ordering information

Module:

 ARC10: Basic aspect ratio converter, 10-bit, horizontal scaling only

Standard I/O:

- BPL01_ARC10: I/O panel for ARC10
- BPX01_ARC10: I/O panel for ARC10 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_ARC10:
 I/O panel for ARC10 with
 fiber transmitter on FC/PC
- BPL01T_SC_ARC10: I/O panel for ARC10 with fiber transmitter on SC

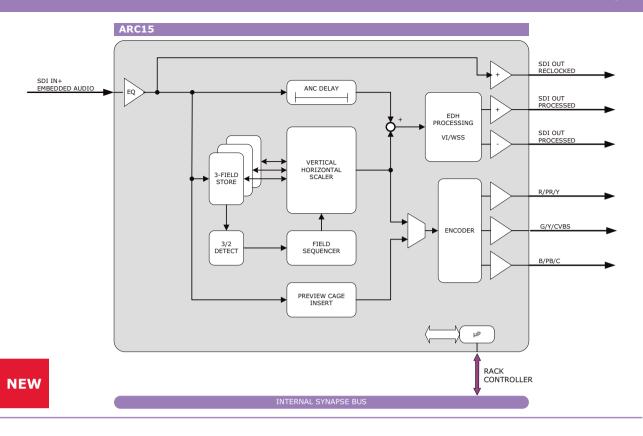
Fiber inputs:

- BPL01R_FC/PC_ARC10:
 I/O panel for ARC10 with
 fiber receiver on FC/PC
- BPL01R_SC_ARC10:
 I/O panel for ARC10 with fiber receiver on SC

CVBS output:

BPL01C_ARC10:

I/O panel for ARC10 with CVBS output


	\mathbf{v}	
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\odot
SDI RECLOCKED OUTPUT 1	\bigcirc	
SDI RECLOCKED OUTPUT 2	\bigcirc	
SDI PROCESSED OUTPUT 1 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	
SDI PROCESSED OUTPUT 2	\bigcirc	
SDI PROCESSED OUTPUT 3	\bigcirc	
SDI PROCESSED OUTPUT 4	\bigcirc	
TRACKING OUTPUT	\bigcirc	
FREEZE INPUT	\bigcirc	\odot
	€	€

For fiber connectivity see www.axon.tv

Specifications

Serial video i	nput	Reference vi	deo input
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4),
	259M-C (270Mb/s) with		NTSC (SMPTE 170M)
	SMPTE 272M embedded audio	Number of	
Number of		inputs	2 on SFR18, 2 on SFR08,
inputs	1		1 on SFR04
Equalization	Automatic to 300m	Connector	BNC
	@ 270Mb/s with Belden	Signal level	1V nominal
	1694A or equivalent cable	Impedance	High impedance, with loop
Return loss	> 15dB up to 270MHz		for termination
		Return loss	> 25dB to 10MHz
SD serial vide	eo output		
Standard	625/50 or 525/59.94 SMPTE	Miscellaneou	S
	259M-C (270Mb/s) with	Weight	Approx. 250g
	SMPTE 272M embedded audio	Operating	
Number of		temperature	0 °C to +50 °C
outputs	4	Dimensions	137 x 296 x 20 mm (HxWxD)
Signal level	800mV nominal		
DC offset	0V ±0.5V	Electrical	
Rise/fall time	800ps nominal	Voltage	+24V to +30V
Overshoot	< 10% of amplitude	Power	7 Watts
Return loss	> 15dB up to 270MHz		

elay bypas

ARC15 High-end bi-directional manual controlled aspect ratio converter with digital and analog outputs

The ARC15 is a manual controlled high quality Aspect Ratio Converter. It features optimized conversion between different aspect ratios such as 4:3, 13:9,14:9, 15:9, 16:9 and 21:9 with full 10-bit resolution (20-bit internal). High quality vertical filtering is reached by using a temporal (3 field), 12-taps FIR filter. The aspect ratios can be switched manual by Cortex or the SCP08. Input and outputs are SDI, 10-bit serial digital video (270 Mb). No genlock reference is needed because the total delay of the ARC15 is fixed. An analog preview monitoring output is provided with several comprehensive functions, including a scaling cage. For transmission applications where WSS or VI control is needed the ARC15 is the solution.

- Functional equivalent to the "industry standard" AXON ARC-1000
- Any format between 4:3 and 21:9 in both directions
- Fixed scaling 4:3, 13:9, 14:9, 15:9, 16:9 and 21:9
- Transparent ANC handling
- Analog preview output configurable for CVBS + YC, RGB or YPrPb
- Preview marker on analog output when input is selected
- Preview output selectable on input or processed output
- Propagation delay 1 frame +0/-7 lines
- Video and film filtering with 3/2 pull down detection
- H and V blanking (black wipe)
- H and V ANC blanking
- CC handling for Line 21/22
- Pan and tilt adjustment
- Full control and status monitoring through the front panel of the SFR04/18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

video processing

18

relay bypass

- 5

Applications

- Post production aspect ratio conversion
- Studio floor monitor aspect ratio conversion

Ordering information

Module:

 ARC15: High-end bi-directional manual controlled aspect ratio converter with digital and analog video outputs

Standard I/O:

- BPL01_ARC15: I/O panel for ARC15
- BPX01_ARC15: I/O panel for ARC15 with relay bypass
- BPX03_ARC15: I/O panel for ARC15 with relay bypass with an unused female sub-D

Fiber outputs:

- BPL01T_FC/PC_ARC15:
 I/O panel for ARC15 with fiber transmitter on FC/PC
- BPL01T_SC_ARC15:
 I/O panel for ARC15 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_ARC15: I/O panel for ARC15 with fiber receiver on FC/PC
- BPL01R_SC_ARC15: I/O panel for ARC15 with fiber receiver on SC

SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	0		
SDI RECLOCKED OUTPUT	\bigcirc	0	relay bypass	
SDI PROCESSED OUTPUT 1		0	relay t	
SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)		(O)-		-
G/Y/CVBS OUTPUT		(O)	Ó	
B/PB/Y OUTPUT		O	\bigcirc	
R/PR/C OUTPUT	\bigcirc	\bigcirc	\bigcirc	
	\bigcirc			
	\bigcirc	\bigcirc	€	
For fiber connectivity see www.axon.tv	BPL01	BPX01	BPX03	

Specifications

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of inpu	ts 1
Equalization	Automatic to 300m @
	270Mb/s with Belden 1694A
	or equivalent cable
	150m with BPX03
Return loss	> 20dB up to 270MHz

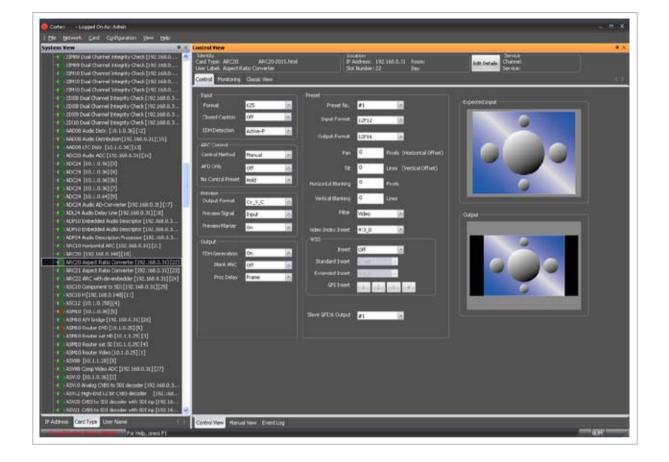
SD serial video output

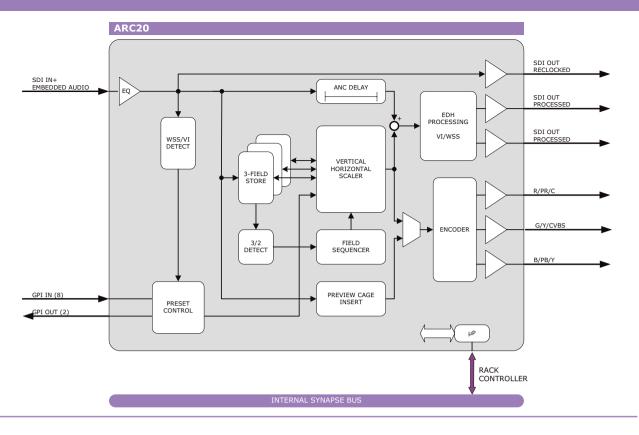
	-
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	3 (2 processed and
	1 reclocked)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	520ps nominal
Overshoot	< 10% of amplitude
Return loss	> 18dB up to 270MHz
Jitter	< 600ps 10Hz HPF

Analog video output


/maiog maco o	acpac
Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M), Component
	and RGB
Number of	
outputs	3
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

Miscellaneous


Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)


Electrical

Voltage	+24V to +30V
Power	<11 Watts

ARC20: shows the visualization of the output given the combinatorial effect of the input and output format.

ARC20 High-end bi-directional aspect ratio converter with digital and analog outputs

The ARC20 is a preset based broadcast quality aspect ratio converter. It features optimized conversion between different aspect ratios such as 4:3, 13:9,14:9, 15:9, 16:9 and 21:9 with full 10-bit resolution (20-bit internal). High quality vertical filtering is reached by using a temporal (3 field), 12-taps FIR filter. The aspect ratios can be switched using WSS, VI, GPI or manual control. Input and outputs are SDI, 10-bit serial digital video (270 Mb). No genlock reference is needed because the total delay of the ARC20 is fixed. An analog preview monitoring output is provided with several comprehensive functions, including a scaling cage. This is the ultimate transmission environment aspect ratio converter, with an extensive record of key-place usage.

- Functional equivalent to the "industry standard" AXON ARC-2000
- Any format between 4:3 and 21:9 in both directions
- Fixed scaling 4:3, 13:9, 14:9, 15:9, 16:9 and 21:9
- Transparent ANC handling
- Analog preview output configurable for CVBS + YC, RGB or YPrPb
- Preview marker on analog output when input is selected
- Preview output selectable on input or processed output
- Propagation delay 1 frame +0/-7 lines
- Video and film filtering with 3/2 pull down detection

- H and V blanking (black wipe)
- H and V ANC blanking
- CC handling for Line 21/22
- 16 user configurable presets
- Preset control:
 - Manual (Synapse setup –Front panel)
 - By Video Index
 - By WSS standard
 - By WSS extended (AFD)
 - By single GPI (max 8 presets with BPX03)
 - By 4 GPI's in binary form
 - By GPI16 as ADD-ON card
- VI, WSS and WSS_ext insertion WSS_ext GPI insertion individually for each preset
- Pan and tilt adjustment per preset
- If VI or WSS lost on input the card jumps to any preset or holds current preset
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

196

ASPECT RATIO CONVERSION

video processing

relay bypass

Applications

- Station output aspect ratio conversion (ideally with BPX03 passive back-up connector panel)
- Ingest aspect ratio conversion
- Post production aspect ratio conversion
- Studio floor monitor aspect ratio conversion

Ordering information

Module:

ARC20: High-end bi-directional aspect ratio converter with digital and analog output

Standard I/O:

- BPL01_ARC20: I/O panel for ARC20
- BPX01_ARC20: I/O panel for ARC20 with relay bypass
- BPX03_ARC20: I/O panel for ARC20 with relay bypass with GPI I/O on female sub-D

Fiber outputs:

BPL01T_FC/PC_ARC20: I/O panel for ARC20 with fiber transmitter on FC/PC

BPL01T_SC_ARC20: I/O panel for ARC20 with fiber transmitter on SC

Fiber inputs:

BPL01R_FC/PC_ARC20: I/O panel for ARC20 with fiber receiver on FC/PC

BPL01R_SC_ARC20: I/O panel for ARC20 with fiber receiver on SC

	e e e e e e e e e e e e e e e e e e e	\bigcirc	•
SDI INPUT (OPTIONAL FIBER INPUT)			
SDI RECLOCKED OUTPUT	\bigcirc	\bigcirc	relay bypass
SDI PROCESSED OUTPUT 1	0	\bigcirc	relay t
SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\odot	0	0
G/Y/CVBS OUTPUT		\bigcirc	\bigcirc
B/PB/Y OUTPUT	\odot	\odot	\bigcirc
R/PR/C OUTPUT		\odot	\bigcirc
	\odot	\odot	
GPI INPUT/OUTPUT (BPX03 ONLY)	\bigcirc	\bigcirc	
	€	\bigcirc	Ð
For fiber connectivity see www.axon.tv	BPL01	BPX01	BPX03

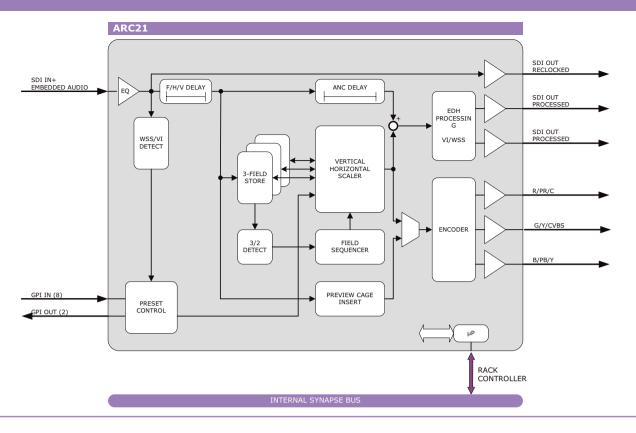
Specifications

Serial video input	
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	1
Equalization	Automatic to 300m
	@ 270Mb/s with Belden
	1694A or equivalent cable
	150m with BPX03
Return loss	> 20dB up to 270MHz

SD serial video output

	•
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	3 (2 processed and
	1 reclocked)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	520ps nominal
Overshoot	< 10% of amplitude
Return loss	> 18dB up to 270MHz
Jitter	< 600ps 10Hz HPF

Analog video output


Analog Maco o	acpac
Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M), Component
	and RGB
Number of	
outputs	3
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<11 Watts

ARC21 Full feature bi-directional aspect ratio converter, digital and analog outputs, with serial video offset delay

The ARC21 is a preset based broadcast quality aspect ratio converter. It features optimized conversion between different aspect ratios such as 4:3, 13:9,14:9, 15:9, 16:9 and 21:9 with full 10-bit resolution (20-bit internal). High quality vertical filtering is reached by using a temporal (3 fields), 12-taps FIR filter. The aspect ratios can be switched using WSS, VI, GPI or manual control. Input and outputs are SDI, 10-bit serial digital video (270 Mb). No genlock reference is needed because the total delay of the ARC21 is fixed. An analog preview monitoring output is provided with several comprehensive functions, including a scaling cage. This is the ultimate transmission environment aspect ratio converter, with an extensive record of key-place usage. The difference to the ARC20 is that the ARC21 has a video offset propagation delay adjustment of up to 16 frames in pixel and line increments.

- Additional offset delay to compensate external audio (i.e. Dolby digital)
- Any format between 4:3 and 21:9 in both directions
- Fixed scaling 4:3, 13:9, 14:9, 15:9, 16:9 and 21:9
- Transparent ANC handling
- Analog preview output configurable for CVBS + YC, RGB or YPrPb
- Preview marker on analog output when input is selected
- Preview output selectable on input or processed output
- Propagation delay 1 frame to 16 frames

- Video and film filtering with 3/2 pulldown detection
- H and V blanking (black wipe)
- H and V ANC blanking
- CC handling for Line 21/22
- 16 user configurable presets
- Preset control:
 - Manual (Synapse setup –Front panel)
 - By Video Index
 - By WSS standard
 - By WSS extended (AFD)
 - By single GPI (max 8 presets on BPX03)
 - By 4 GPI's in binary form)
 - By GPI16 as ADD-ON card
- VI, WSS and WSS_ext insertion WSS_ext GPI insertion individually for each preset
- Pan and tilt adjustment per preset
- If VI or WSS lost on input the card jumps to any preset or holds current preset
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

ASPECT RATIO CONVERSION

video processing

n 81

relay bypass

- 11

Applications

- Station output aspect ratio conversion (ideally with BPX03 passive back-up connector panel)
- Ingest aspect ratio conversion
- Post production aspect ratio conversion
- Studio floor monitor aspect ratio conversion

Ordering information

Module:

 ARC20: High-end bi-directional aspect ratio converter with digital and analog output

Standard I/O:

- BPL01_ARC21: I/O panel for ARC21
- BPX01_ARC21: I/O panel for ARC21 with relay bypass
- BPX03_ARC21: I/O panel for ARC21 with relay bypass with GPI I/O on female sub-D

Fiber outputs:

 BPL01T_FC/PC_ARC21: I/O panel for ARC21 with fiber transmitter on FC/PC

 BPL01T_SC_ARC21:
 I/O panel for ARC21 with fiber transmitter on SC

Fiber inputs:

 BPL01R_FC/PC_ARC21: I/O panel for ARC21 with fiber receiver on FC/PC

 BPL01R_SC_ARC21: I/O panel for ARC21 with fiber receiver on SC

		- 3	
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\bigcirc	
SDI RECLOCKED OUTPUT	\bigcirc		relay bypass
SDI PROCESSED OUTPUT 1	\bigcirc	\bigcirc	
SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	0	
G/Y/CVBS OUTPUT	\odot	\bigcirc	Ó
B/PB/Y OUTPUT	\odot	\bigcirc	\bigcirc
R/PR/C OUTPUT	\odot	\bigcirc	\bigcirc
	\odot	\odot	
GPI INPUT/OUTPUT (BPX03 ONLY)	\bigcirc		
	A state	\bigcirc	₽
For fiber connectivity see www.axon.tv	BPL01	BPX01	BPX03

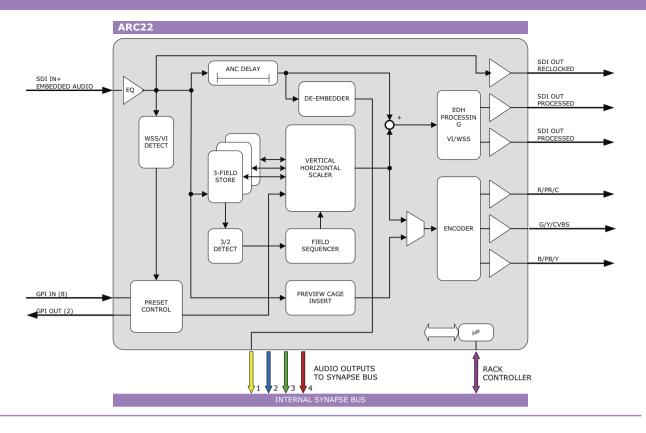
Specifications

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	
	150m with BPX03	
Return loss	> 20dB up to 270MHz	

SD serial video output

Standard	625/50 or 525/59.94 SMPTE		
	259M-C (270Mb/s) with		
	SMPTE 272M embedded		
	audio		
Number of			
outputs	3 (2 processed and		
	1 reclocked)		
Signal level	800mV nominal		
DC offset	0V ±0.5V		
Rise/fall time	520ps nominal		
Overshoot	< 10% of amplitude		
Return loss	> 18dB up to 270MHz		
Jitter	< 600ps 10Hz HPF		

Analog video output


Analog Maco output				
Standard	PAL (ITU624-4) or NTSC			
	(SMPTE 170M), Component			
	and RGB			
Number of				
outputs	3			
Connector	BNC			
Signal level	1V nominal			
Impedance	75 Ohms			
Return loss	> 35dB to 10MHz			
Frequency				
response	0.5dB to 4.5 MHz			
Differential gain	< 0.6%			
Differential				
phase	< 0.7°			
SNR	> 75dB			

Miscellaneous

Weight Approx. 250g	
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<11 Watts

ARC22 High-end bi-directional aspect ratio converter, digital and analog outputs, with de-embedder

The ARC22 is a preset based broadcast quality aspect ratio converter. It features optimized conversion between different aspect ratios such as 4:3, 13:9,14:9, 15:9, 16:9 and 21:9 with full 10-bit resolution (20-bit internal). High quality vertical filtering is reached by using a temporal (3 fields), 12-taps FIR filter. The aspect ratios can be switched using WSS, VI, GPI or manual control. Input and outputs are SDI, 10-bit serial digital video (270 Mb). No genlock reference is needed because the total delay of the ARC22 is fixed. An analog preview monitoring output is provided with several comprehensive functions, including a scaling cage. This is the ultimate transmission environment aspect ratio converter, with an extensive record of key-place usage. With respect to the ARC20, the ARC22 has a built in de-embedder that outputs on the Synapse bus.

- Master card de-embedding function. Requires a Synapse ADD-ON audio output card such as the DAC20
- Any format between 4:3 and 21:9 in both directions
- Fixed scaling 4:3, 13:9, 14:9, 15:9, 16:9 and 21:9
- Transparent ANC handling
- Analog preview output configurable for CVBS + YC, RGB or YPrPb
- Preview marker on analog output when input is selected
- Preview output selectable on input or processed output
- Propagation delay 1 frame +0/-7 lines
- Video and film filtering with 3/2 pulldown detection

- H and V blanking (black wipe)
- H and V ANC blanking
- CC handling for Line 21/22
- 16 user configurable presets
- Preset control:
 - Manual (Synapse setup –Front panel)
 - By Video Index
 - By WSS standard
 - By WSS extended (AFD)
 - By single GPI (max 8 presets on BPX03)
 - By 4 GPI's in binary form)
 - By GPI16 as ADD-ON card
- VI, WSS and WSS_ext insertion WSS_ext GPI insertion individually for each preset
- Pan and tilt adjustment per preset
- If VI or WSS lost on input the card jumps to any preset or holds current preset
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

ASPECT RATIO CONVERSION

video processing

n 8

relay bypas

- 1

Applications

- Station output aspect ratio conversion (ideally with BPX03 passive back-up connector panel)
- Ingest aspect ratio conversion
- Post production aspect ratio conversion
- Studio floor monitor aspect ratio conversion

Ordering information

Module:

 ARC22: High-end bi-directional aspect ratio converter, digital and analog outputs, with de-embedder

Standard I/O:

- BPL01_ARC22: I/O panel for ARC22
- BPX01_ARC22: I/O panel for ARC22 with relay bypass
- BPX03_ARC22: I/O panel for ARC22 with relay bypass with GPI I/O on female sub-D

Fiber outputs:

- BPL01T_FC/PC_ARC22: I/O panel for ARC22 with fiber transmitter on FC/PC
- BPL01T_SC_ARC22: I/O panel for ARC22 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_ARC22: I/O panel for ARC22 with fiber receiver on FC/PC
- BPL01R_SC_ARC22:
 I/O panel for ARC22 with fiber receiver on SC

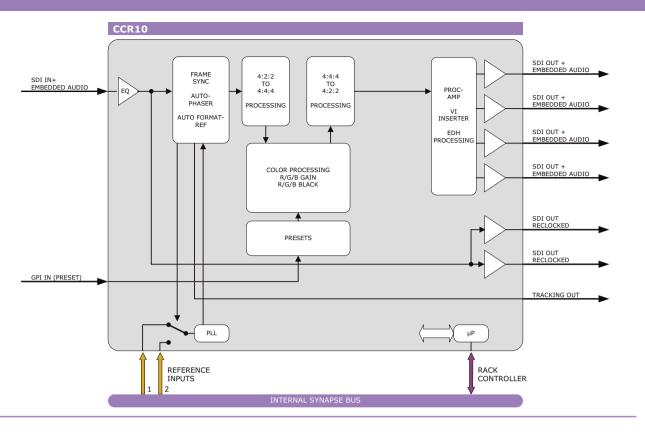
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	0	
SDI RECLOCKED OUTPUT	\odot	\bigcirc	relay bypass
SDI PROCESSED OUTPUT 1	\odot	\bigcirc	relay t
SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)		0	- © -
G/Y/CVBS OUTPUT	\bigcirc	\bigcirc	Ó
B/PB/Y OUTPUT		\bigcirc	Ô
R/PR/C OUTPUT	\bigcirc	\bigcirc	Ó
	\odot		
GPI INPUT/OUTPUT (BPX03 ONLY)			₩ ₩
	Ð	\bigcirc	e
For fiber connectivity see www.axon.tv	BPL01	BPX01	BPX03

Specifications

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	
	150m with BPX03	
Return loss	> 20dB up to 270MHz	
SD serial vid	eo output	
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	

	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
outputs	3 (2 processed and	
	1 reclocked)	
Signal level	800mV nominal	
DC offset	0V ±0.5V	
Rise/fall time	520ps nominal	
Overshoot	< 10% of amplitude	
Return loss	> 18dB up to 270MHz	
Jitter	< 600ps 10Hz HPF	

Analog video output


Analog Maco output			
Standard	PAL (ITU624-4) or NTSC		
	(SMPTE 170M), Component		
	and RGB		
Number of			
outputs	3		
Connector	BNC		
Signal level	1V nominal		
Impedance	75 Ohms		
Return loss	> 35dB to 10MHz		
Frequency			
response	0.5dB to 4.5 MHz		
Differential gain	< 0.6%		
Differential			
phase	< 0.7°		
SNR	> 75dB		

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V	
Power	<11 Watts	

CCR10 SDI preset based color corrector with frame synchronizer

The CCR10 is a color corrector with a built-in frame synchronizer and black level adjustment. The internal processing of the color corrector is based on the RGB sampling format 4:4:4. The card has 4 processed outputs and 2 reclocked outputs and allows you to adjust individual or combined R,G,B gain and black levels. Eight presets can be selected directly or via an external GPI16. Only 2 presets can be selected via the local GPI input. The card is ideal for color correction on studio floor monitors or low-cost CCD cameras.

- 4 processed outputs
- 8 presets containing the following items:
 - R, G and B gain control
 - R, G and B black level control
 - RGB total gain
 - Black total gain
 - Chroma gain
- Clip status indication
- 2 user presets with local GPI
- 8 user presets with optional GPI16
- Adjustable delay up to 1 frame
- Full frame synchronizer with adjustable H and V offset
- Video Index (VI) insertion
- Ideal in combination with the SCP08 control panel
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

Applications

- Free running CCD camera color correction (includes frame synchronizer)
- Preset based color correction for change from day light to artificial light (sport events)
- In picture display color correction (screens that are visible in a studio shot)
- Post production color correction
- Lines center and ingest color correction

Ordering information

Module:

CCR10: SDI preset based color corrector with frame synchroniser

Standard I/O:

- BPL01_CCR10: I/O panel for CCR10
- BPX01_CCR10: I/O panel for CCR10 with relay bypass

Fiber outputs:

- BPLOT FC/PC CCR10: I/O panel for CCR10 with fiber transmitter on FC/PC
- BPLOT_SC_CCR10: I/O panel for CCR10 with fiber transmitter on SC

Fiber inputs:

- BPLOR_FC/PC_CCR10: I/O panel for CCR10 with fiber receiver on FC/PC
- BPLOR_SC_CCR10: I/O panel for CCR10 with fiber receiver on SC

CVBS output:

BPL01C_CCR10: I/O panel for CCR10 with CVBS output

SDI INPUT (OPTIONAL FIBER INPUT)	0	(
SDI RECLOCKED OUTPUT 1	\bigcirc	(
SDI RECLOCKED OUTPUT 2		(
SDI PROCESSED OUTPUT 1 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	(
SDI PROCESSED OUTPUT 2	\bigcirc	(
SDI PROCESSED OUTPUT 3	\bigcirc	٩
SDI PROCESSED OUTPUT 4	\bigcirc	(
TRACKING OUTPUT	\bigcirc	ď
GPI INPUT (PRESET)		(
	Θ	

For fiber connectivity see www.axon.tv

Specifications

Serial video i	nput	Reference vi	deo input
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4),
	259M-C (270Mb/s) with		NTSC (SMPTE 170M)
	SMPTE 272M embedded audio	Number of	
Number of		inputs	2 on SFR18, 2 on SFR08,
inputs	1		1 on SFR04
Equalization	Automatic to 300m	Connector	BNC
	@ 270Mb/s with Belden	Signal level	1V nominal
	1694A or equivalent cable	Impedance	High impedance, with loop
Return loss	> 15dB up to 270MHz		for termination
		Return loss	> 25dB to 10MHz
SD serial vide	eo output		
Standard	625/50 or 525/59.94 SMPTE	Miscellaneou	s
	259M-C (270Mb/s) with	Weight	Approx. 250g
	SMPTE 272M embedded au-	Operating	
	dio	temperature	0 °C to +50 °C
Number of		Dimensions	137 x 296 x 20 mm (HxWxD)
outputs	4		
Signal level	800mV nominal	Electrical	
DC offset	0V ±0.5V	Voltage	+24V to +30V
Rise/fall time	800ps nominal	Power	<6 Watts
Overshoot	< 10% of amplitude		

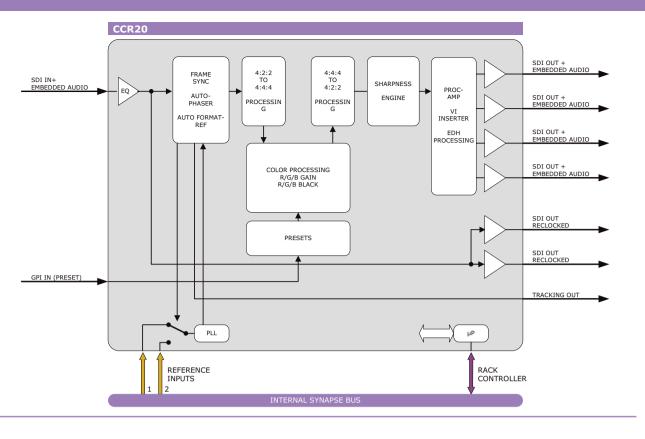
> 15dB up to 270MHz

Return loss

BPL01

24-4), PTE 170M) 8, 2 on SFR08, 4 dance, with loop

203


Ð

0

elay bypass

Ô

BPX01

CCR20 SDI preset based color corrector with frame synchronizer and enhancement engine

The CCR20 is a color corrector enhancement engine with a built-in frame synchronizer and black level adjustment. The enhancement engine (the difference between this card and the CCR10) enables post down-conversion sharpness. The internal processing of the color corrector is based on the RGB sampling format 4:4:4. The card has 4 processed outputs and 2 reclocked outputs and allows you to adjust individual or combined R,G,B gain and black levels. Eight presets can be selected directly or via an external GPI16. Only 2 presets can be selected via the local GPI input. The card is ideal for color correction on studio floor monitors or low-cost CCD cameras.

- H+V Sharpness adjustment
- 4 processed outputs
- 8 presets containing the following items:
 - R, G and B gain control
 - R, G and B black level control
 - RGB total gain
 - Black total gain
 - Chroma gain
- Clip status indication
- 2 user presets with local GPI
- 8 user presets with optional GPI16
- Adjustable delay up to 1 frame
- Full frame synchronizer with adjustable H and V offset
- Video Index (VI) insertion
- Ideal in combination with the SCP08 control panel
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

video processing

BPL01

BPX01

Applications

- Free running CCD camera color correction (includes frame synchronizer)
- Preset based color correction for change from day light to artificial light (sport events)
- In picture display color correction (screens that are visible in a studio shot)
- Post production color correction
- Lines center and ingest color correction

Ordering information

Module:

 CCR20: SDI preset based color corrector with frame synchronizer and enhancement engine

Standard I/O:

BPL01_CCR20: I/O panel for CCR20

 BPX01_CCR20:
 I/O panel for CCR20 with relay bypass

Fiber outputs:

 BPLOT_FC/PC_CCR20: I/O panel for CCR20 with fiber transmitter on FC/PC

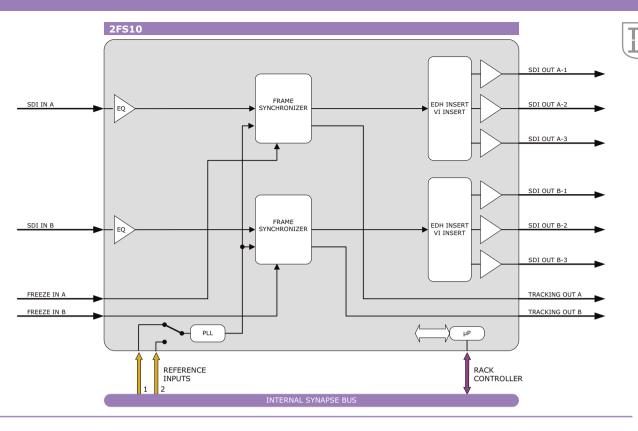
 BPLOT_SC_CCR20:
 I/O panel for CCR20 with fiber transmitter on SC

Fiber inputs:

- BPLOR_FC/PC_CCR20: I/O panel for CCR20 with fiber receiver on FC/PC
- BPLOR_SC_CCR20: I/O panel for CCR20 with fiber receiver on SC

CVBS output:

 BPL01C_CCR20: I/O panel for CCR20 with CVBS output


SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\odot
SDI RECLOCKED OUTPUT 1	\bigcirc	\odot
SDI RECLOCKED OUTPUT 2	\bigcirc	\odot
SDI PROCESSED OUTPUT 1 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	\odot
SDI PROCESSED OUTPUT 2	\bigcirc	\odot
SDI PROCESSED OUTPUT 3	\bigcirc	\odot
SDI PROCESSED OUTPUT 4	\bigcirc	\odot
TRACKING OUTPUT	\bigcirc	\odot
GPI INPUT (PRESET)	\bigcirc	\bigcirc
	{	€

For fiber connectivity see www.axon.tv

Specifications

Serial video input		Reference video input	
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4),
	259M-C (270Mb/s) with		NTSC (SMPTE 170M)
	SMPTE 272M embedded audio	Number of	
Number of		inputs	2 on SFR18, 2 on SFR08,
inputs	1		1 on SFR04
Equalization	Automatic to 300m	Connector	BNC
	@ 270Mb/s with Belden	Signal level	1V nominal
	1694A or equivalent cable	Impedance	High impedance, with loop
Return loss	> 15dB up to 270MHz		for termination
		Return loss	> 25dB to 10MHz
SD serial vide	eo output		
Standard	625/50 or 525/59.94 SMPTE	Miscellaneou	S
	259M-C (270Mb/s) with	Weight	Approx. 250g
	SMPTE 272M embedded audio	Operating	
Number of		temperature	0 °C to +50 °C
outputs	4	Dimensions	137 x 296 x 20 mm (HxWxD
Signal level	800mV nominal		
DC offset	0V ±0.5V	Electrical	
Rise/fall time	800ps nominal	Voltage	+24V to +30V
Overshoot	< 10% of amplitude	Power	<7 Watts
Return loss	> 15dB up to 270MHz		

elay

2FS10 Dual channel frame synchronizer

The 2FS10 is a broadcast quality full featured dual channel frame synchronizer/autophaser. Two fully independent free running signals can be synchronized to the same Black & Burst reference. The density of the Synapse system is doubled by the introduction of "TWINS", to an impressive 8 channels in 1 rack unit and 36 channels in 4 rack units. The 2FS10 is fully transparent for embedded audio.

- Frame synchronizer or delay mode
- Line synchronizer/autophaser
- Full frame adjustable output phase (channel independent) with respect to reference in sample increments
- V-bit autophasing (625 only)
- VI insertion
- EDH processing
- GPI Freeze input
- Tracking audio output
- Selectable manual freeze
- Black, Green or freeze video output on loss of input
- Selectable horizontal and vertical blanking
- Freeze and tracking signals on an easy to wire RJ45 connector
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel

video processing

Ô

 \cap

Ο

C

BPX04

elay t

Ð

Ô

Ô

С

С

BPL11

Applications

- Generic multi channel frame synchronization
- Lines centre input synchronization
- Post router autophasing line synchronization
- Dual SDI delay line applications
- High density applications as in OB-Trucks

Ordering information

Module:

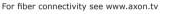
2FS10: Dual channel frame synchronizer

Standard I/O:

- BPL11_2FS10: I/O panel for 2FS10
- BPX04_2FS10: I/O panel for 2FS10 with relay bypass

Fiber outputs:

- BPL11T2_FC/PC_2FS10:
 I/O panel for 2FS10 with
 2 fiber transmitter on FC/PC
- BPL11T2_SC_2FS10:
 I/O panel for 2FS10 with
 2 fiber transmitter on SC


Fiber inputs:

- BPL11R2_FC/PC_2FS10:
 I/O panel for 2FS10 with
 2 fiber receiver on FC/PC
- BPL11R2_SC_2FS10:
 I/O panel for 2FS10 with 2 fiber receiver on SC

CVBS outputs:

BPL11C2_2FS10:
 I/O panel for 2FS10 with
 2 CVBS outputs

SDI INPUT A (OPTIONAL FIBER INPUT)
SDI OUTPUT A-1
SDI OUTPUT A-2
SDI OUTPUT A-3 (OPTIONAL FIBER OR CVBS OUTPUT)
FREEZE & TRACKING INPUT/OUTPUT
SDI INPUT B (OPTIONAL FIBER INPUT)
SDI OUTPUT B-1
SDI OUTPUT B-2
SDI OUTPUT B-3 (OPTIONAL FIBER OR CVBS OUTPUT)

Specifications

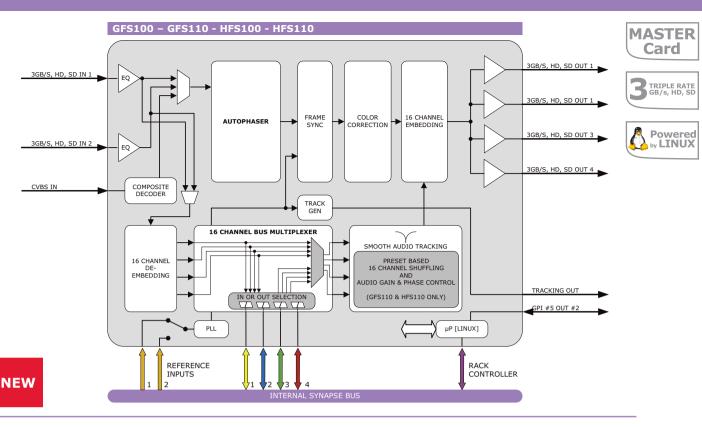
Serial video input	
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	2 (1 per channel)
Equalization	Automatic to 300m
	@ 270Mb/s with Belden
	1694A or equivalent cable
Return loss	> 15dB up to 270MHz

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded au-
	dio
Number of	
outputs	6 (3 per channel)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

Reference video input

itererence rideo input		
Standard	PAL (ITU624-4),	
	NTSC (SMPTE 170M)	
Number of		
inputs	2 on SFR18, 2 on SFR08,	
	1 on SFR04	
Connector	BNC	
Signal level	1V nominal	
Impedance	High impedance, with loop	
	for termination	
Return loss	> 25dB to 10MHz	


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<9 Watts

207

GFS100 - GFS110 - HFS100 - HFS110 3Gb/s, HD, SD frame synchronizer with optional audio shuffler

The GFS100/110 and HFS100/110 are frame synchronizers with backup inputs and 16 channel audio transparency and color correcting capabilities. The powerful matrix multiplexer can feed audio from the embedded domain into the Synapse bus to an ADD-ON card like the DIO48. This matrix multiplexer also allows for audio to be inserted from the ADD-ON bus into the embedded domain of the GFS100/110 or HFS100/110.

The GFS110 or HFS110 add a full audio shuffler and audio procamp with gain and phase control.

The GFS100/110 are compatible with 270Mb/s, 1.5Gb/s and 3Gb/s for full 1080p/50 or 1080p/59.94 use. The HFS100/110 are compatible with SD-SDI (270Mb/s) and HD-SDI (1.5Gb/s) and can be future upgraded to 3Gb/s compatibility.

- Autophaser
- Frame Synchronizer
- Adjustable offset delay up to +1 second
- Video proc-amp (Y and C control)
- Hue control for NTSC inputs
- Color corrector (RGB and total gain, RGB and total black)
- Second (backup) input
- 5 GPI inputs for ARC and Shuffle triggers
- Transparent for 16 channels of embedded audio
- Embedded domain audio shuffling, gain and phase control (GFS - HSF110 only)
- Embedding through Synapse bus
- De-embedding to Synapse bus with transparent input to output handling
- Compatible with:
 - 270 Mbit/s (SMPTE 259M) 50 and 59.94Hz
 - 1485 Mbit/s (SMPTE 292M) 50 and 59.94Hz
 - 2970 Mbit/s (SMPTE 424M) 50 and 59.94Hz (GFS100/110 only)

Applications

Transmission output frame synchronizer with backup input.

Ordering information

Module:

- **GFS100:** 3Gb/s, HD, SD Frame synchronizer
- **GFS110:** 3Gb/s, HD, SD Frame synchronizer with audio shuffler proc-amp
- HFS100: HD, SD Frame synchronizer converter*
- HFS110: HD, SD Frame synchronizer with audio shuffler proc-amp*

Standard I/O:

- BPH17_GFS100: I/O-panel for GFS100 with RJ45 GPI/O
- BPH17_GFS110: I/O-panel for GFS110 with RJ45 GPI/O BPH17_HFS100: I/O-panel
- for HFS100 with RJ45 GPI/O
- BPH17_HFS110: I/O-panel for HFS110 with RJ45 GPI/O

* Upgradable to 3Gb/s

3GB/S, HD, SD INPUT 1
3GB/S, HD, SD INPUT 2
3GB/S, HD, SD OUTPUT 1
3GB/S, HD, SD OUTPUT 2
GPI INPUT/OUTPUT
3GB/S, HD, SD OUTPUT 3
3GB/S, HD, SD OUTPUT 4
CVBS INPUT

For fiber connectivity see www.axon.tv

Specifications

Standard	SD,HD and 3Gb/s SDI:	
	SMPTE 292M, SMPTE 259M,	
	SMPTE424	
Number of inputs 2		
Connector	BNC	
Equalization	Typical maximum equalized	
	length of Belden 1694A	
	cable: 90m at 2.97Gb/s,	
	120m at 1.485Gb/s, and	
	250m at 270Mb/s	
Return loss	> 15dB up to 1.5GHz	

Serial video output

Number of	
outputs	4
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	135ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.5GHz (typ.)
	> 10dB up to 3GHz (typ.)
Wideband iitter	< 0.2UI

Wideband jitter < 0.2UI

Miscellaneous		
Weight	Approx. 450g	
Operating		
temperature	0 °C to +40 °C	
Dimensions	137 x 296 x 20 mm (HxWxD)	

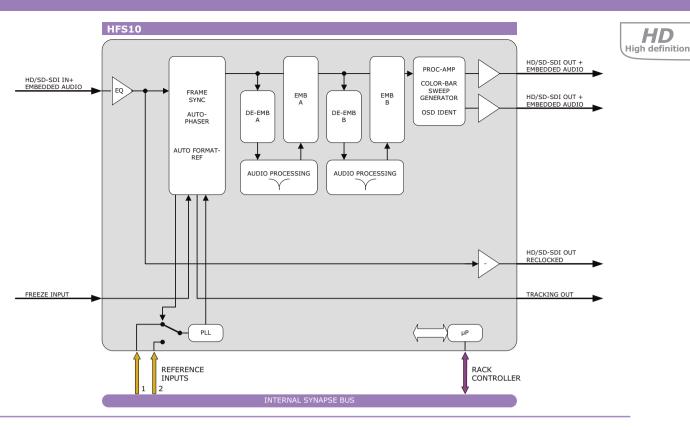
Electrical

Voltage	+24V to +30V
Power	<17 Watts

video processing

4

Ο


Ô

Ó

Ô

Ó

BPH17

HFS10 HD/SD frame synchronizer with smart audio handling for 2 groups

The HFS10 is an HD/SD frame synchronizer/video delay/autophaser module, video proc-amp and if in synchronizer mode, the HFS10 has smart audio handling for 2 embedded audio groups. The synchronizer function can be used to synchronize a non-synchronous signal or to compensate for a delay. The HFS10 has full transparent blanking, both horizontally and vertically. The video reference is connected through the central genlock input of the SFR18, SFR08 or SFR04 frames and is compatible with 2-level and 3-level sync. The line synchronizer function corrects timing errors (hops) that occur due to switching in a router. In addition the HFS10 can be used as a delay line, giving up to 1 frame delay. A video reference is not required in this case as the output clock frequency is derived from the input video clock.

- HD-SDI and SD-SDI compatible
- Formats:
 - 1080i/50/60
- 1035i/60
- 720p/50/60/
- 1080p(sf)/24/25/30
- Built-in proc amp
- 2 groups smart audio handling (user selectable out of all 4 groups)
- Audio processing pass through, processed or mute
- 2-level, 3-level sync compatible

- Tracking output
- Freeze input
- On loss of input:
 - Freeze
 - Black
 - Green
 - Gray
- One reclocked output
- Two processed outputs
- I/O delay measurement
- Switch positioning measurement (in autophase mode)
- H and V delay offset adjustment with respect to input or reference
- ANC blanking of H, V or H+V
- Test pattern (color bar/sweep)
- OSD ident label with maximum 10 characters (for set-up purposes)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

video processing

Applications

- Free running external video synchronization
- Post router line synchronization or autophasing
- Video timing adjustment for virtual studios
- Jitter killer

Ordering information

Module:

 HFS10: HD/SD frame synchronizer with smart audio handling for 2 groups

Standard I/O:

BPH01_HFS10: I/O panel for HFS10

Fiber outputs:

- BPH01T_FC/PC_HFS10:
 I/O panel for HFS10 with fiber transmitter on FC/PC
- BPH01T_SC_HFS10:
 I/O panel for HFS10 with fiber transmitter on SC

Fiber inputs:

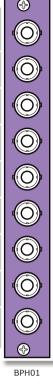
- BPH01R_FC/PC_HFS10: I/O panel for HFS10 with fiber receiver on FC/PC
- BPH01R_SC_HFS10:
 I/O panel for HFS10 with fiber receiver on SC

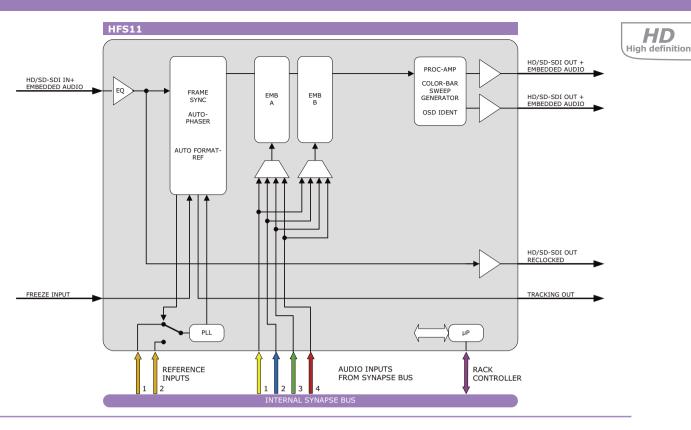
HD/SD SDI INPUT (OPTIONAL FIBER INPUT)

HD/SD SDI RECLOCKED OUTPUT

HD/SD SDI PROCESSED OUTPUT 1

HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)


FREEZE INPUT


TRACKING OUTPUT

For fiber connectivity see www.axon.tv

Specifications

HD/SD seria	video input	Overshoot	< 10% of amplitude
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 15dB up to 1.0Gb/s, >
	259M-C (270Mb/s) with		10dB up to 1.5Gb/s
	SMPTE 272M embedded audio	Wideband jitter	< 0.2UI
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	Reference vide	eo input
	SMPTE 296M, SMPTE 349M	Standard	PAL (ITU624-4),
	1080i/59.94, 1080i/50,		NTSC (SMPTE 170M)
	720p/59.94, 720p/50	Number of	
Equalization	Automatic to 100m	inputs	2 on SFR18, 2 on SFR08,
	@ 1.5Gb/s with Belden		1 on SFR04
	1694A or equivalent cable.	Connector	BNC
Return loss	> 15dB up to 1.5GHz	Signal level	1V nominal
		Impedance	High impedance, with loop
HD serial vid	eo output		for termination
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 25dB to 10MHz
	259M-C (270Mb/s) with		
	SMPTE 292M (1.5Gb/s),	Miscellaneous	
	SMPTE 260M, SMPTE 274M,	Weight	Approx. 250g
	SMPTE 296M, SMPTE 349M	Operating	
	1080i/59.94, 1080i/50,	temperature	0 °C to +50 °C
	720p/59.94, 720p/50	Dimensions	137 x 296 x 20 mm (HxWxD)
Signal level	800mV nominal		
DC offset	0V ±0.5V	Electrical	
Rise and		Voltage	+24V to +30V
fall time	200ps nominal for HD, 750ps	Power	<8 Watts
	nominal for SD		

HFS11 HD/SD frame synchronizer with audio embedding for 2 groups

The HFS11 is an HD/SD frame synchronizer/video delay/autophaser module, video proc amp. In addition, the HFS11 has a 2 group embedding function. The synchronizer function can be used to synchronize a non-synchronous signal or to compensate a delay. The HFS11 has full transparent blanking, both horizontally and vertically. The video reference is connected through the central genlock input of the SFR18, SFR08 or SFR04 frames and is compatible with a bi-level and tri-level sync. The line synchronizer function corrects timing errors (hops) that occur due to switching in a router. In addition the HFS11 can be used as a delay line, giving up to 1 frame delay. A video reference is not required in this case, as the output clock frequency is derived from the input video clock.

- HD-SDI and SD-SDI compatible
- Formats:
 - 1080i/50/60
 - 1035i/60
 - 720p/50/60
 - 1080p(sf)/24/25/30
- Built-in proc amp
- 2 groups of audio embedding with Synapse ADD-ON card
- Audio processing pass through, processed or mute
- 2-level, 3-level sync compatible
- Tracking output

- Freeze input
- On loss of input:
 - Freeze
 - Black
 - Green
 - Gray
- One reclocked output
- Two processed outputs
- I/O delay measurement
- Switch positioning measurement (in auto phase mode)
- H and V delay offset adjustment with respect to input or reference
- ANC blanking of H, V or H+V
- Test pattern (color bar/sweep)
- OSD ident label with maximum 10 characters (for set-up purposes)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

FRAME SYNCHRONIZERS

video processing

()

 \bigcirc

 \bigcirc

BPH01

Applications

- Free running external video synchronization with tracking embedding function
- Post router line synchronization or auto phasing
- Video timing adjustment for virtual studios
- Jitter killer

Ordering information

Module:

HFS11: HD/SD frame synchronizer with audio embedding for 2 groups

Standard I/O:

BPH01_HFS11: I/O panel for HFS11

Fiber outputs:

- BPH01T_FC/PC_HFS11: I/O panel for HFS11 with fiber transmitter on FC/PC
- BPH01T_SC_HFS11: I/O panel for HFS11 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HFS11: I/O panel for HFS11 with fiber receiver on FC/PC
- BPH01R_SC_HFS11: I/O panel for HFS11 with fiber receiver on SC

HD/SD	SDI	INPUT	(OPTIONAL	FIBER	INPUT
,			(

HD/SD SDI RECLOCKED INPUT

HD/SD SDI PROCESSED OUTPUT 1

HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)

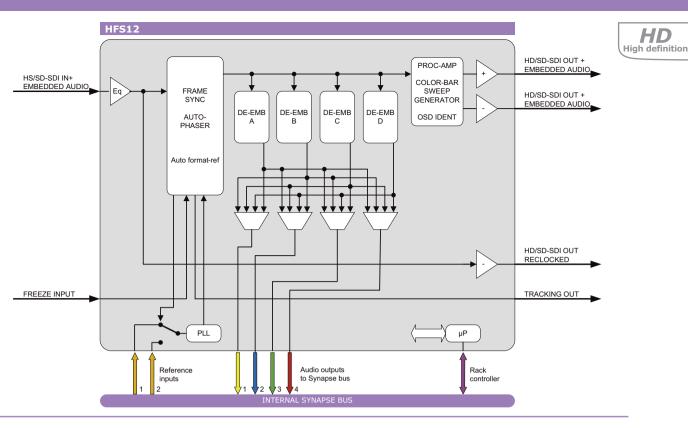
FREEZE INPUT

TRACKING OUTPUT

For fiber connectivity see www.axon.tv

Specifications

Standard	625/50 or 525/59.94 SMPTE	Return loss	> 15d
	259M-C (270Mb/s) with		> 10d
	SMPTE 272M embedded audio	Wideband jitter	< 0.2
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	Reference vide	eo inp
	SMPTE 296M, SMPTE 349M	Standard	PAL (I
	1080i/59.94, 1080i/50,		NTSC
	720p/59.94, 720p/50	Number of	
Equalization	Automatic to 100m	inputs	2 on S
	@ 1.5Gb/s with Belden		on SFF
	1694A or equivalent cable.	Connector	BNC
Return loss	> 15dB up to 1.5GHz	Signal level	1V nor
		Impedance	High ir
HD serial vid	eo output		for ter
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 25d
Standard			
Standard	259M-C (270Mb/s) with		
Standard		Miscellaneous	
Standard	259M-C (270Mb/s) with	Miscellaneous Weight	Approx
	259M-C (270Mb/s) with SMPTE 272M embedded audio		Approx
	259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s),	Weight	
	259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M,	Weight Operating	0 °C to
	259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M	Weight Operating temperature	0 °C to
Signal level	259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50,	Weight Operating temperature	0 °C to
	259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50	Weight Operating temperature Dimensions	0 °C to 137 x
Signal level	259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal	Weight Operating temperature Dimensions Electrical	0 °C to 137 x +24V
Signal level DC offset	259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal	Weight Operating temperature Dimensions Electrical Voltage	Approx 0 °C to 137 x +24V 7 Watt


rshoot	< 10% of amplitude
urn loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
eband jitter	< 0.2UI

ut

Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08, 1
	on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz

Approx. 250g
0 °C to +50 °C
137 x 296 x 20 mm (HxWxD)

24V to +30V
Watts

HFS12 HD/SD frame synchronizer with audio de-embedding of 16 channels

The HFS12 is an HD/SD frame synchronizer/video delay/autophaser module, video proc amp. In addition, the HFS12 has a 4 group de-embedder function. The synchronizer function can be used to synchronize a non-synchronous signal or to compensate a delay. The HFS12 has total transparent blanking, both horizontally and vertically. The video reference is connected through the central genlock input of the SFR18, SFR08 or SFR04 frames and is compatible with bi-level and tri-level sync. The line synchronizer function corrects timing errors (hops) that occur due to switching in a router. In addition the HFS12 can be used as a delay line, giving up to 1135 lines of delay. A video reference is not required in this case as the output clock frequency is derived from the input video clock.

- HD-SDI and SD-SDI compatible
- Formats:
 - 1080i/50/60
 - 1035i/60
 - 720p/50/60/
 - 1080p(sf)/24/25/30
- Built-in proc amp
- 16 channels of audio de-embedding with Synapse ADD-ON card
- Audio processing pass through, processed or mute
- Bi-level, tri-level sync compatible
- Tracking output
- Freeze input

- On loss of input:
 - Freeze
- Black
- Green
- Gray
- One reclocked output
- Two processed outputs
- I/O delay measurement
- Switch positioning measurement (in autophase mode)
- H and V delay offset adjustment with respect to input or reference
- ANC blanking of H, V or H+V
- Test pattern (color bar/sweep)
- OSD ident label with maximum 10 characters (for set-up purposes)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SF18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

214

FRAME SYNCHRONIZERS

video processing

()

 \bigcirc

Applications

- Free running external video synchronization with tracking de-embedding function
- Post router line synchronization or autophasing
- Video timing adjustment for virtual studios
- Jitter killer

Ordering information

Module:

HFS12: HD/SD frame synchronizer with audio de-embedding of 16-channels

Standard I/O:

BPH01_HFS12: I/O panel for HFS12

Fiber outputs:

- BPH01T_FC/PC_HFS12: I/O panel for HFS12 with fiber transmitter on FC/PC
- BPH01T_SC_HFS12: I/O panel for HFS12 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HFS12: I/O panel for HFS12 with fiber receiver on FC/PC
- BPH01R_SC_HFS12: I/O panel for HFS12 with fiber receiver on SC

HD/SD	SDI	INPUT	(OPTIONAL	FIBER	INPUT)

HD/SD SDI RECLOCKED OUTPUT

HD/SD SDI PROCESSED OUTPUT 1

HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)

FREEZE INPUT

TRACKING OUTPUT

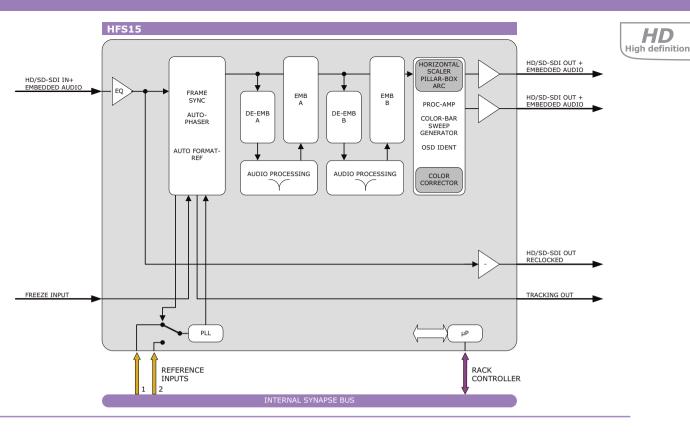
For fiber connectivity see www.axon.tv

Specifications

HD/SD seria	l video input	Overshoot	<
Standard	625/50 or 525/59.94 SMPTE	Return loss	>
	259M-C (270Mb/s) with		>
	SMPTE 272M embedded audio	Wideband jitter	<
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	Reference vid	eo
	SMPTE 296M, SMPTE 349M	Standard	P/
	1080i/59.94, 1080i/50,		N
	720p/59.94, 720p/50	Number of	
Equalization	Automatic to 100m	inputs	2
	@ 1.5Gb/s with Belden		1
	1694A or equivalent cable.	Connector	В
Return loss	> 15dB up to 1.5GHz	Signal level	1
		Impedance	Н
HD serial vid	eo output		fo
Standard	625/50 or 525/59.94 SMPTE	Return loss	>
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio	Miscellaneous	
	SMPTE 292M (1.5Gb/s),	Weight	А
	SMPTE 260M, SMPTE 274M,	Operating	
	SMPTE 296M, SMPTE 349M	temperature	0
	1080i/59.94, 1080i/50,	Dimensions	1
	720p/59.94, 720p/50		
Signal level	800mV nominal	Electrical	
DC offset	0V ±0.5V	Voltage	+
Rise and		Power	7
fall time	200ps nominal for HD,		
	750ps nominal for SD		

rshoot	< 10% of amplitude
urn loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
eband jitter	< 0.2UI

input


Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz

Approx. 250g
0 °C to +50 °C
137 x 296 x 20 mm (HxWxD)

Voltage	+24V to +30V
Power	7 Watts

BPH01

 \bigcirc

HFS15 HD/SD frame synchronizer with color corrector and smart audio handling

The HFS15 is an HD/SD frame synchronizer/video delay/autophaser module with color corrector. In addition this unit features a video proc amp and if in synchronizer mode, the HFS15 has smart audio handling for 2 embedded audio groups. The synchronizer function can be used to synchronize a non-synchronous signal or to compensate for a delay. The HFS15 has full transparent blanking, both horizontally and vertically. The video reference is connected through the central gen-lock input of the SFR18, SFR08 or SFR04 frames and is compatible with 2-level and 3-level sync. The line synchronizer function corrects timing errors (hops) that occur due to switching in a router. In addition the HFS15 can be used as a delay line, giving up to 1 frame delay. A video reference is not required in this case as the output clock frequency is derived from the input video clock.

- HD-SDI and SD-SDI compatible
- Formats:
 - 1080i/50/60
 - 1035i/60
 - 720p/50/60
 - 1080p(sf)/24/25/30
- Color corrector
- Built-in proc amp
- 2 groups smart audio handling (user selectable out of all 4 groups)

- Audio processing pass through, processed or mute
- 2-level, 3-level sync compatible
- Tracking output
- Freeze input
- On loss of input:
- Freeze
- Black
- Green
- Gray
- One reclocked output
- Two processed outputs
- I/O delay measurement
- Switch positioning measurement (in autophase mode)
- H and V delay offset adjustment with respect to input or reference
- ANC blanking of H, V or H+V
- Test pattern (color bar/sweep)
- OSD ident label with maximum 10 characters (for set-up purposes)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

FS15

FRAME SYNCHRONIZERS

video processing

(A)

 \mathbf{O}

Ô

BPH01

Applications

- Free running external video synchronization with tracking de-embedding function
- Post router line synchronization or autophasing
- Video timing adjustment for virtual studios
- Jitter killer

Ordering information

Module:

HFS15: HD/SD frame synchronizer with color corrector and smart audio handling

Standard I/O:

BPH01_HFS15: I/O panel for HFS15

Fiber outputs:

- BPH01T_FC/PC_HFS15: I/O panel for HFS15 with fiber transmitter on FC/PC
- BPH01T_SC_HFS15: I/O panel for HFS15 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HFS15: I/O panel for HFS15 with fiber receiver on FC/PC
- BPH01R_SC_HFS15: I/O panel for HFS15 with fiber receiver on SC

HD/SD SDI RECLOCKED OUTPUT

HD/SD SDI PROCESSED OUTPUT 1

HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)

FREEZE INPUT

TRACKING OUTPUT

For fiber connectivity see www.axon.tv

Specifications

HD/SD seria	l video input	Overshoot
Standard	625/50 or 525/59.94 SMPTE	Return los
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	Wideband
	SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,	Referenc
	SMPTE 296M, SMPTE 349M	Standard
	1080i/59.94, 1080i/50,	
	720p/59.94, 720p/50	Number of
Equalization	Automatic to 100m	inputs
	@ 1.5Gb/s with Belden	
	1694A or equivalent cable.	Connector
Return loss	> 15dB up to 1.5GHz	Signal leve
		Impedanc
HD serial vid	eo output	
Standard	625/50 or 525/59.94 SMPTE	Return los
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	Miscellar
	SMPTE 292M (1.5Gb/s),	Weight
	SMPTE 260M, SMPTE 274M,	Operating
	SMPTE 296M, SMPTE 349M	temperatu
	1080i/59.94, 1080i/50,	Dimension

720p/59.94, 720p/50

200ps nominal for HD, 750ps

800mV nominal

nominal for SD

0V ±0.5V

Signal level

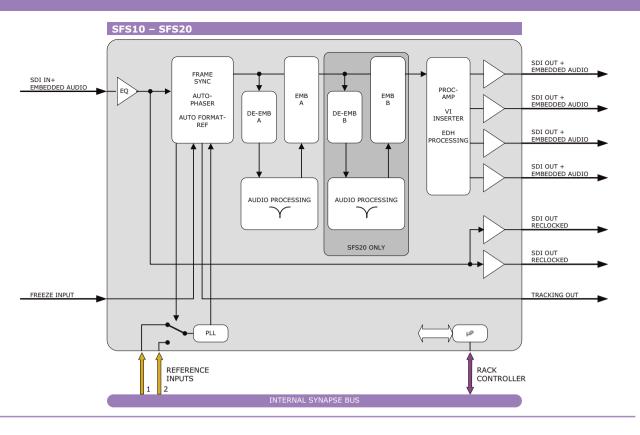
DC offset

Rise and fall time

/ershoot	< 10% of amplitude
eturn loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
ideband jitter	< 0.2UI

ce video input

Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz


neous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	7 Watts

SFS10 - SFS20 Multi functional frame/line synchronizer with smooth emb. audio processing (10:1 group, 20:2 groups)

The SFS10/20 is an SD frame synchronizer, line synchronizer/ autophaser, video delay, video proc-amp and Video Index inserter. In addition, the SFS10/20 has smart audio handling for embedded audio when in synchronizer mode. The synchronizer function can be used to synchronize a non-synchronous signal or to compensate for a delay. New sync codes (TRS) are being generated and re-inserted in the output signal. The SFS10/20 has total transparent blanking, both horizontally and vertically. The video reference is connected through the central genlock input of the SFR18, SFR08 or SFR04 frames. The line synchronizer function corrects timing errors (hops) that occur due to router switching. The SFS10/20 can also be used as a delay line, giving up to 625 lines of delay. A video reference is not required in this case as the output clock frequency is derived from the input video clock.

- Auto detecting of 525/625 with correct reference input selection (SFR08 and SFR18 only)
- Frame synchronizer or delay mode
- Automatic Line synchronizer/autophaser function
- Full frame adjustable output phase with respect to reference in sample and line increments
- Adjustable vertical interval blanking (selectable start and stop line)

- V-bit autophasing (625 only)
- Proc-Amp
- Y, Cr and Cb gain
- Y, Cr and Cb Black
- Smooth embedded audio handling for one (SFS10) or 2 (SFS20) groups
- Embedded audio pass, blank or processed modes
- Individual group selection for processed mode
- Blanking of two adjustable ranges in the vertical interval from line 4 to 23
- VI insertion
- EDH processing
- GPI Freeze input
- Tracking audio output
- Selectable panic freeze or manual freeze
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

synchronizer

Jitter killer

cleaning

Ordering

Standard I/O:

for SFS10

for SFS20

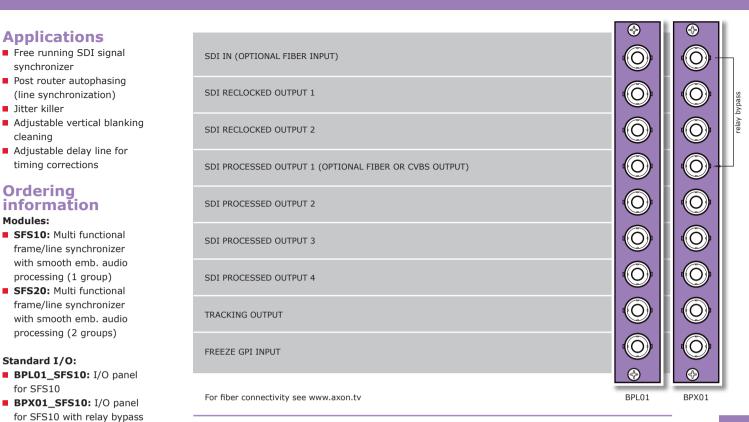
Fiber outputs:

Fiber inputs:

CVBS outputs: BPL01C_SFS10:

CVBS output

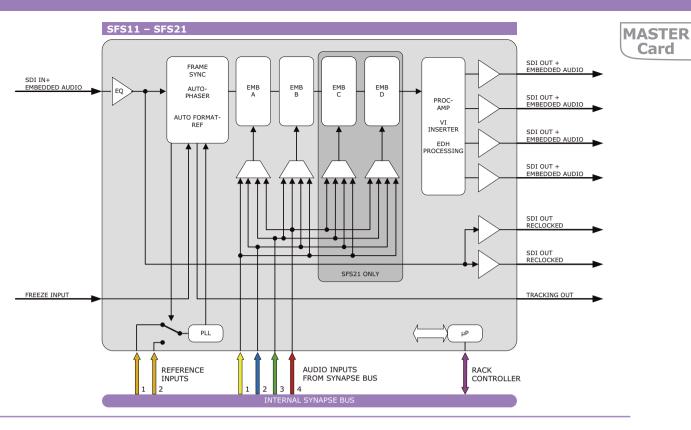
BPL01R FC/PC SFS10: I/O panel for SFS10 with fiber receiver on FC/PC BPL01R SC SFS10: I/O panel for SFS10 with fiber receiver on SC BPL01R FC/PC SFS20: I/O panel for SFS20 with fiber receiver on FC/PC BPL01R_SC_SFS20: I/O panel for SFS20 with fiber receiver on SC


BPL01_SFS20: I/O panel

BPX01_SFS20: I/O panel for SFS20 with relay bypass

BPL01T_FC/PC_SFS10: I/O panel for SFS10 with fiber transmitter on FC/PC BPL01T_SC_SFS10: I/O panel for SFS10 with fiber transmitter on SC BPL01T_FC/PC_SFS20: I/O panel for SFS20 with fiber transmitter on FC/PC BPL01T_SC_SFS20: I/O panel for SFS20 with fiber transmitter on SC

Modules:


video processing

Specifications

Serial video i	nput	Reference vie	deo input
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4), NTSC
	259M-C (270Mb/s) with		(SMPTE 170M)
	SMPTE 272M embedded audio	Number of	
Number of		inputs	2 on SFR18, 2 on SFR08,
inputs	1		1 on SFR04
Equalization	Automatic to 300m @	Connector	BNC
	270Mb/s with Belden 1694A	Signal level	1V nominal
	or equivalent cable	Impedance	High impedance, with loop
Return loss	> 15dB up to 270MHz		for termination
		Return loss	> 25dB to 10MHz
SD serial vide	eo output		
Standard	625/50 or 525/59.94 SMPTE	Miscellaneou	s
	259M-C (270Mb/s) with	Weight	Approx. 250g
	SMPTE 272M embedded audio	Operating	
Number of		temperature	0 °C to +50 °C
outputs	4	Dimensions	137 x 296 x 20 mm (HxWxD)
Signal level	800mV nominal		
DC offset	0V ±0.5V	Electrical	
Rise/fall time	800ps nominal	Voltage	+24V to +30V
Overshoot	< 10% of amplitude	Power	<7 Watts

I/O panel for SFS10 with

SFS11 - SFS21 Multi functional frame/line synchronizer with embedding function (11: 2 groups, 21: 4 groups)

The SFS11 is an SD frame synchronizer, line synchronizer/autophaser, video delay, video proc-amp and Video Index inserter. In addition, the SFS11 has a 2 group embedder (4 group in the SFS21). The synchronizer function can be used to synchronize a non-synchronous signal or to compensate for a delay. New sync codes (TRS) are being generated and re-inserted in the output signal. The SFS11/21 has total transparent blanking, both horizontally and vertically. The video reference is connected through the central genlock input of the SFR18, SFR08 or SFR04 frames. The line synchronizer function corrects timing errors (hops) that occur due to switching in a router. In addition the SFS11/21 can be used as a delay line, giving up to 625 lines of delay. A video reference is not required in this case as the output clock frequency is derived from the input video clock.

- Auto detecting of 525/625 with correct reference input selection (SFR08 and SFR18 only)
- Frame synchronizer or delay mode
- Automatic Line synchronizer/autophaser function
- Full frame adjustable output phase with respect to reference in sample and line increments
- Adjustable vertical interval blanking (selectable start and stop line)

- V-bit autophasing (625 only)
- Proc-Amp
 - $\blacksquare\,$ Y, Cr and Cb gain
 - Y, Cr and Cb Black
- 2 Group (4 for the SFS21) embedding with Synapse ADD-ON card like the ADC20, DIO24 and others
- Blanking of two adjustable ranges in the vertical interval from line 4 to 23
- VI insertion
- EDH processing
- GPI Freeze input
- Tracking audio output
- Selectable panic freeze or manual freeze
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

FRAME SYNCHRONIZERS

function

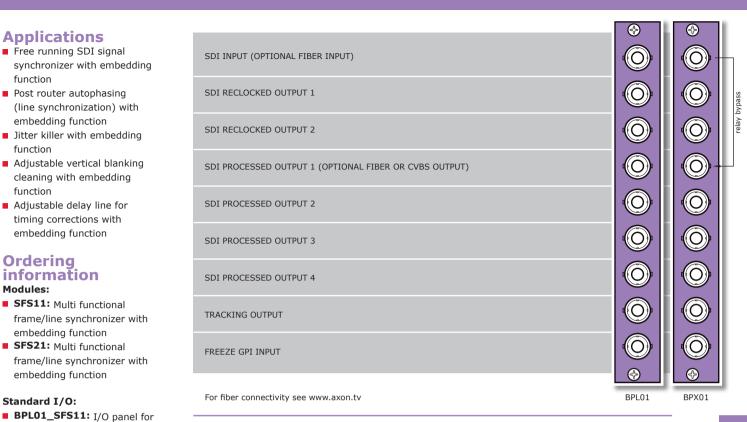
function

function

Modules:

SFS11

BPL01_SFS21: I/O panel for SFS21 BPX01_SFS21: I/O panel for SFS21 with relay bypass


Fiber outputs:

BPX01_SFS11: I/O panel

BPL01T_FC/PC_SFS11: I/O panel for SFS11 with fiber transmitter on FC/PC BPL01T_SC_SFS11: I/O panel for SFS11 with fiber transmitter on SC BPL01T_FC/PC_SFS21: I/O panel for SFS21 with fiber transmitter on FC/PC BPL01T_SC_SFS21: I/O panel for SFS21 with fiber transmitter on SC

for SFS11 with relay bypass

video processing

Specifications

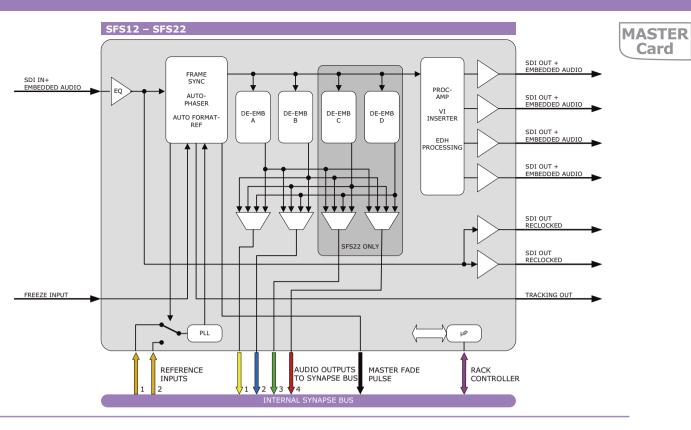
Serial video input		Reference vi	Reference video input	
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4), NTSC	
	259M-C (270Mb/s) with		(SMPTE 170M)	
	SMPTE 272M embedded audio	Number of		
Number of		inputs	2 on SFR18, 2 on SFR08,	
inputs	1		1 on SFR04	
Equalization	Automatic to 300m @	Connector	BNC	
	270Mb/s with Belden 1694A	Signal level	1V nominal	
	or equivalent cable	Impedance	High impedance, with loop	
Return loss	> 15dB up to 270MHz		for termination	
		Return loss	> 25dB to 10MHz	
SD serial vide	eo output	Return loss	> 25dB to 10MHz	
SD serial vide Standard	eo output 625/50 or 525/59.94 SMPTE	Return loss Miscellaneou		
	•			
	625/50 or 525/59.94 SMPTE	Miscellaneou	s	
	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with	Miscellaneou Weight	s	
Standard	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with	Miscellaneou Weight Operating	s Approx. 250g 0 °C to +50 °C	
Standard Number of	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio	Miscellaneou Weight Operating temperature	s Approx. 250g 0 °C to +50 °C	
Standard Number of outputs	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio 4	Miscellaneou Weight Operating temperature	s Approx. 250g	
Standard Number of outputs Signal level	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio 4 800mV nominal	Miscellaneou Weight Operating temperature Dimensions	s Approx. 250g 0 °C to +50 °C	
Standard Number of outputs Signal level DC offset	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio 4 800mV nominal 0V ±0.5V	Miscellaneou Weight Operating temperature Dimensions Electrical	s Approx. 250g 0 °C to +50 °C 137 x 296 x 20 mm (HxWxD)	

Fiber inputs:

I/O panel for SFS21 with fiber receiver on FC/PC BPL01R_SC_SFS21: I/O

BPL01R_FC/PC_SFS11: I/O panel for SFS11 with

fiber receiver on FC/PC BPL01R_SC_SFS11: I/O panel for SFS11 with


panel for SFS21 with fiber receiver on SC

CVBS outputs:

- BPL01C_SFS11: I/O panel for SFS11 with CVBS output
- BPL01C_SFS21: I/O panel for SFS21 with CVBS output

221

Card

SFS12 - SFS22 Multi functional frame/line synchronizer with de-embedding function (12: 2 groups, 22: 4 groups)

The SFS12 is an SD frame synchronizer, line synchronizer/autophaser, video delay, video proc-amp and Video Index inserter. In addition, the SFS12 has a 2 group de-embedder (4 group in the SFS22). The synchronizer function can be used to synchronize a non-synchronous signal or to compensate for a delay. New sync codes (TRS) are being generated and re-inserted in the output signal. The SFS12/22 has total transparent blanking, both horizontally and vertically. The video reference is connected through the central genlock input of the SFR18, SFR08 or SFR04 frames. The line synchronizer function corrects timing errors (hops) that occur due to switching in a router. In addition the SFS12/22 can be used as a delay line, giving up to 625 lines of delay. A video reference is not required in this case as the output clock frequency is derived from the input video clock.

- Auto detecting of 525/625 with correct reference input selection (SFR08 - SFR18 only)
- Frame synchronizer or delay mode
- Automatic Line synchronizer/autophaser function
- Full frame adjustable output phase with respect to reference in sample and line increments
- Adjustable vertical interval blanking (selectable start and stop line)

- V-bit autophasing (625 only)
- Proc-Amp
 - Y, Cr and Cb gain
 - Y, Cr and Cb Black
- 2 Group (4 for the SFS22) de-embedding with Synapse ADD-ON card like the DAC20, DAS24 and others
- Blanking of two adjustable ranges in the vertical interval from line 4 to 23
- VI insertion
- EDH processing
- GPI Freeze input
- Tracking audio output
- Selectable panic freeze or manual freeze
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

Jitter killer with

function

Ordering

Standard I/O:

BPL01_SFS22: I/O panel for SFS22 BPX01_SFS22: I/O panel for SFS22 with relay bypass

Fiber outputs:

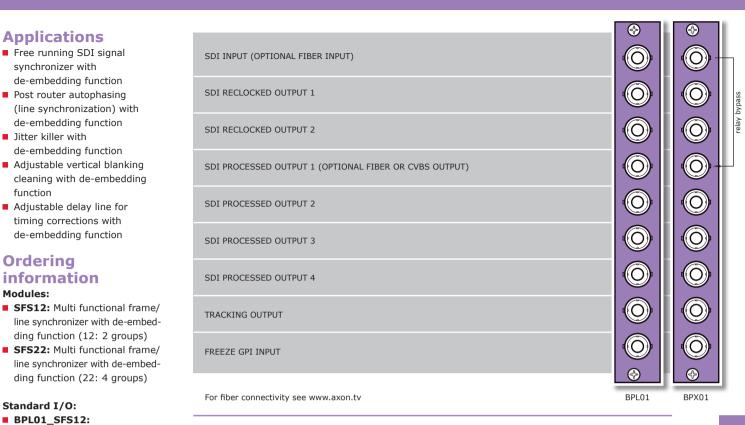
I/O panel for SFS12 BPX01_SFS12: I/O panel

for SFS12 with relay bypass

BPL01T_FC/PC_SFS12: I/O panel for SFS12 with fiber transmitter on FC/PC BPL01T_SC_SFS12:

transmitter on SC BPL01T_FC/PC_SFS22: I/O panel for SFS22 with fiber transmitter on FC/PC BPL01T_SC_SFS22: I/O panel for SFS22 with fiber transmitter on SC

Fiber inputs:


BPL01R_FC/PC_SFS12:

I/O panel for SFS12 with fiber receiver on FC/PC BPL01R_SC_SFS12: I/O panel for SFS12 with fiber receiver on SC BPL01R_FC/PC_SFS22: I/O panel for SFS22 with fiber

I/O panel for SFS12 with fiber

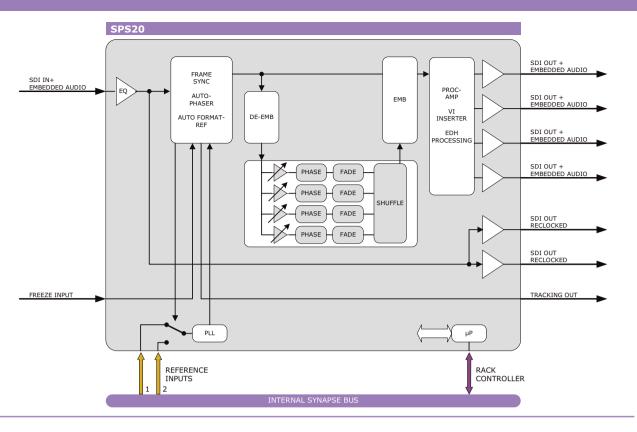
Modules:

video processing

Specifications

Serial video input		Reference video input	
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4), NTSC
	259M-C (270Mb/s) with		(SMPTE 170M)
	SMPTE 272M embedded audio	Number of	
Number of		inputs	2 on SFR18, 2 on SFR08,
inputs	1		1 on SFR04
Equalization	Automatic to 300m @	Connector	BNC
	270Mb/s with Belden 1694A	Signal level	1V nominal
	or equivalent cable	Impedance	High impedance, with loop
Return loss	> 15dB up to 270MHz		for termination
		Determine to an	
		Return loss	> 25dB to 10MHz
SD serial vide	eo output	Return loss	> 250B to 10MHz
SD serial vide Standard	eo output 625/50 or 525/59.94 SMPTE	Miscellaneou	
	•		
	625/50 or 525/59.94 SMPTE	Miscellaneou	s
	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with	Miscellaneou Weight	s
Standard	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with	Miscellaneou Weight Operating	s Approx. 250g 0 °C to +50 °C
Standard Number of	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio	Miscellaneou Weight Operating temperature	s Approx. 250g
Standard Number of outputs	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio 4	Miscellaneou Weight Operating temperature	s Approx. 250g 0 °C to +50 °C
Standard Number of outputs Signal level	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio 4 800mV nominal	Miscellaneou Weight Operating temperature Dimensions	s Approx. 250g 0 °C to +50 °C
Standard Number of outputs Signal level DC offset	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio 4 800mV nominal 0V ±0.5V	Miscellaneou Weight Operating temperature Dimensions Electrical	S Approx. 250g 0 °C to +50 °C 137 x 296 x 20 mm (HxWxD)

CVBS outputs:


receiver on FC/PC BPL01R_SC_SFS22:

receiver on SC

BPL01C_SFS12: I/O panel for SFS12 with CVBS output

I/O panel for SFS22 with fiber

BPL01C_SFS22: I/O panel for SFS22 with CVBS output

SPS20 SD-SDI Multi functional frame/line synchronizer with full embedded audio processing

The SPS20 is a frame synchronizer, line synchronizer/autophaser, video delay, video proc-amp and Video Index inserter. In addition, the SPS20 has smart audio handling for embedded audio when in synchronizer mode. The SPS20 accepts an incoming SDI stream with embedded audio, de-embeds the audio and relocates (shuffles) the audio channels as required by the user. Each audio channel is individually routed giving selection independence. The synchronizer function can be used to synchronize a non-synchronous signal or to compensate for a delay. New sync codes (TRS) are being generated and re-inserted in the output signal. The SPS20 has totally transparent blanking, both horizontally and vertically.

- 4 (out of 16) embedded audio channel control
- Gain, phase and shuffle control in one group
- Auto detecting of 525/625 with correct reference input selection (SFR08 - SFR18 only)
- Frame synchronizer or delay mode
- Automatic Line synchronizer/autophaser function
- Full frame adjustable output phase with respect to reference in sample and line increments
- V-bit autophasing (625 only)

- Proc-Amp
 - Y, Cr and Cb gain
 - Y, Cr and Cb Black
- Embedded audio pass, blank or processed modes
- Individual group selection for processed mode
- VI insertion
- EDH processing
- GPI Freeze input
- Tracking audio output
- Selectable panic freeze or manual freeze
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

FRAME SYNCHRONIZERS

video processing

- Free running SDI signal synchronizer with de-embedding function
- Post router autophasing (line synchronization) with de-embedding function
- Jitter killer with de-embedding function
- Adjustable vertical blanking cleaning with de-embedding function
- Adjustable delay line for timing corrections with de-embedding function

Ordering information

Module:

SPS20: SD-SDI Multi functional frame/line synchronizer with full embedded audio processing

Standard I/O:

- BPL01_SPS20: I/O panel for SPS20
- BPX01_SPS20: I/O panel for SPS20 with relay bypass

Fiber outputs:

BPL01T_FC/PC_SPS20: I/O panel for SPS20 with fiber transmitter on FC/PC

BPL01T_SC_SPS20: I/O panel for SPS20 with fiber transmitter on SC

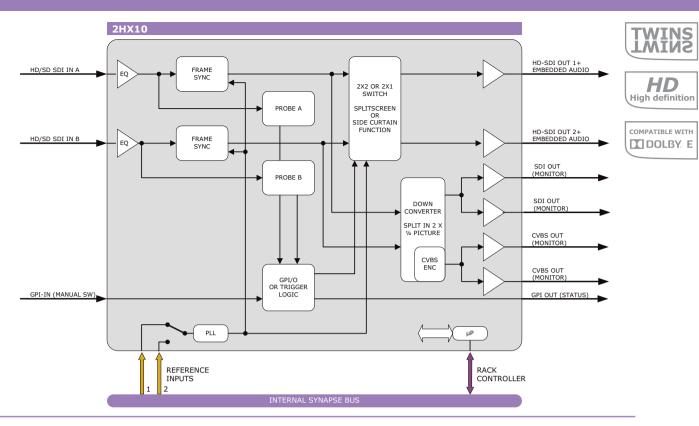
Fiber inputs:

- BPL01R_FC/PC_SPS20: I/O panel for SPS20 with fiber receiver on FC/PC
- BPL01R_SC_SPS20: I/O panel for SPS20 with fiber receiver on SC

CVBS output:

BPL01C_SPS20: I/O panel for SPS20 with CVBS output

	(€
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	
SDI RECLOCKED OUTPUT 1	\bigcirc	\bigcirc
SDI RECLOCKED OUTPUT 2	\bigcirc	\bigcirc
SDI PROCESSED OUTPUT 1 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	
SDI PROCESSED OUTPUT 2	\bigcirc	\bigcirc
SDI PROCESSED OUTPUT 3	\bigcirc	\bigcirc
SDI PROCESSED OUTPUT 4	\bigcirc	\bigcirc
TRACKING OUTPUT	\bigcirc	\bigcirc
FREEZE GPI INPUT	\bigcirc	\bigcirc
		\bigcirc
For fiber connectivity see www.axon.tv	BPL01	BPX01


Specifications

Serial video i	nput	Reference vic	leo input
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4), NTSC
	259M-C (270Mb/s) with		(SMPTE 170M)
	SMPTE 272M embedded audio	Number of	
Number of		inputs	2 on SFR18, 2on SFR08,
inputs	1		1 on SFR04
Equalization	Automatic to 300m @	Connector	BNC
	270Mb/s with Belden 1694A	Signal level	1V nominal
	or equivalent cable	Impedance	High impedance, with loop
Return loss	> 15dB up to 270MHz		for termination
		Return loss	> 25dB to 10MHz
SD serial vide	eo output		
Standard	625/50 or 525/59.94 SMPTE	Miscellaneous	S
	259M-C (270Mb/s) with	Weight	Approx. 250g
	SMPTE 272M embedded audio	Operating	
Number of		temperature	0 °C to +50 °C
outputs	4	Dimensions	137 x 296 x 20 mm (HxWxD)
Signal level	800mV nominal		
DC offset	0V ±0.5V	Electrical	
Rise/fall time	800ps nominal	Voltage	+24V to +30V
Overshoot	< 10% of amplitude	Power	<7 Watts
Return loss	> 15dB up to 270MHz		
Keturn 1055			

SPS20

elay I

	24	2
	-	C
	3	5
	3	2
1	18	3
	9	١
)

2HX10 Dual channel HD/SD integrity checking probe with clean switch over function and wings or split screen creation capabilities

The 2HX10 is a dual channel high performance HD/SD SDI video and embedded audio probe (signal integrity monitor) with clean switch-over function. The switch function can be triggered by any of the integrity controls or by GPI. Besides the extensive probe functions, the cards also provide full line and frame synchronization on both inputs. A monitor output available in both SD and CVBS shows both inputs on a single screen (1/4 size each).

- Clean backup switching through built-in frame synchronizers
- Preview output showing both signals on a single screen (monitoring quality)
- Creating wings and split screens
- Probe functions:
 - SDI carrier detect
 - TRS validation
 - ANC checksum validation
 - Video content freeze detection
 - Video content black detection
 - Timecode availability
 - Audio channel detection (16 channels)
 - Audio silence detection (4 pairs 2 groups)
 - Audio Phase reversal detection within one group (4 pairs)
 - Audio Clip/5 sample full-scale indication (4 pairs)
 - Dolby E present detection
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel

video processing

Applications

- The 2HX10 can be used as station output card, and ingest quality control card or a generic 2 x 2 switch
- The integrity checking can also be performed for alarm monitoring purposes with the switch function disabled
- Generic probing with automatic back-up switching
- Creation of wings (see picture 1)
- Creation of split screens (see picture 2)

Ordering information

Module:

2HX10: Dual channel HD/ SD integrity checking probe with switch over function

Standard I/O:

BPH05_2HX10: I/O-panel for 2HX10

Fiber outputs:

- BPH05T2_FC/PC_2HX10: I/O-panel for 2HX10 with 2 fiber transmitter on FC/PC
- BPH05T2_SC_2HX10: I/O-panel for 2HX10 with 2 fiber transmitter on SC

Fiber inputs:

- BPH05R2_FC/PC_2HX10: I/O-panel for 2HX10 with 2 fiber receiver on FC/PC
- BPH05R2_SC_2HX10: I/O-panel for 2HX10 with 2 fiber receiver on SC

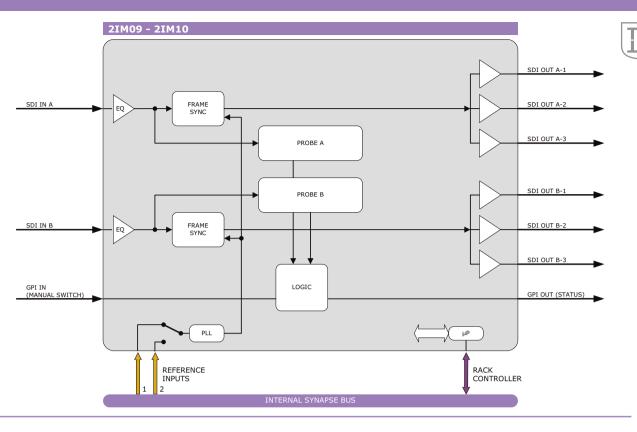
HD/SD SDI OUTPUT 1(OPTIONAL FIBER OUTPUT)
SD-SDI OUTPUT (MONITOR)
CVBS OUTPUT (MONITOR)
GPI INPUT/OUTPUT
HD/SD SDI INPUT 2 (OPTIONAL FIBER INPUT)
HD/SD SDI OUTPUT 2 (OPTIONAL FIBER OUTPUT)
SD-SDI OUTPUT (MONITOR)
CVBS OUTPUT (MONITOR)

HD/SD SDI INPUT 1 (OPTIONAL FIBER INPUT)

Specifications

Rise and

fall time


200ps nominal for HD, 750ps nominal for SD

HD/SD serial video input		< 10% of amplitude
625/50 or 525/59.94 SMPTE	Return loss	> 15dB up to 1.0Gb/s,
259M-C (270Mb/s) with		> 10dB up to 1.5Gb/s
SMPTE 272M embedded audio		
SMPTE 292M (1.5Gb/s),	SD serial video	o output
SMPTE 260M, SMPTE 274M,	Standard	625/50 or 525/59.94 SMPTE
SMPTE 296M, SMPTE 349M		259M-C (270Mb/s) with
1080i/59.94, 1080i/50,		SMPTE 272M embedded audio
720p/59.94, 720p/50	Number of	
Automatic to 100m	outputs	2
@ 1.5Gb/s with Belden	Signal level	800mV nominal
1694A or equivalent cable	DC offset	0V ±0.5V
	Rise/fall time	800ps nominal
2 (auto or manual selection)	Overshoot	< 10% of amplitude
> 15dB up to 1.5GHz	Return loss	> 15dB up to 270MHz
	Return loss	> 15dB at 270Mb/s
video output	Wideband jitter	< 0.2UI
625/50 or 525/59.94 SMPTE	Video delay	1 field
259M-C (270Mb/s) with		
SMPTE 272M embedded audio	Miscellaneous	
SMPTE 292M (1.5Gb/s),	Weight	Approx. 250g
SMPTE 260M, SMPTE 274M,	Operating	
SMPTE 296M, SMPTE 349M	temperature	0 °C to +50 °C
1080i/59.94, 1080i/50,	Dimensions	137 x 296 x 20 mm (HxWxD)
10001/39.94, 10001/30,		
720p/59.94, 720p/50		
	Electrical	
	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 244M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 Automatic to 100m @ 1.5Gb/s with Belden 1694A or equivalent cable 2 (auto or manual selection) > 15dB up to 1.5GHz 1 video output 625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M,	625/50 or 525/59.94 SMPTEReturn loss259M-C (270Mb/s) withSMPTE 272M embedded audioSMPTE 272M embedded audioSMPTE 292M (1.5Gb/s),SMPTE 260M, SMPTE 274M,StandardSMPTE 296M, SMPTE 349M1080i/59.94, 1080i/50,720p/59.94, 720p/50Number ofAutomatic to 100moutputs@ 1.5Gb/s with BeldenSignal level1694A or equivalent cableDC offset2 (auto or manual selection)> 15dB up to 1.5GHz> 15dB up to 1.5GHzReturn lossIvideo outputWideband jitter625/50 or 525/59.94 SMPTEVideo delay259M-C (270Mb/s) withMiscellaneousSMPTE 292M (1.5Gb/s),WeightSMPTE 260M, SMPTE 274M,Operating

Power

<13 Watts

2HX10

2IM09 - 2IM10 Dual channel (enhanced) integrity checking probe with built-in frame synchronizers

The 2IM09/10 is a dual channel high performance SDI video and embedded audio probe (signal integrity monitor). The difference between the 2IM09 and 2IM10 is that the latter has an enhanced range of probing functions that include phase reversal and macro blocking detection. The switch function can be triggered by any of the integrity controls or by GPI. Besides the extensive probe functions, the cards also provide full line and frame synchronization on both inputs. Each output has a fan-out of 3.

- Dolby E present detection*
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel
- *= 2IM10 only

- SDI carrier detect
- EDH detection
- TRS validation
- ANC checksum validation*
- Y/Pr/Pb Range validation (64<Y<940, 64<Pr or Pb<960)*
- Video content freeze detection
- Video content black detection
- Video monochrome detection (Stuck C value)*
- Macro blocking detection*
- Timecode availability*
- VI value detection*
- WSS value detection*
- Audio channel count detection (8 stereo pairs)*
- Audio silence detection (8 channels)*
- Audio Phase reversal detection within one group (2 pairs)*
- Audio Clip/5 sample full-scale indication*

Applications

- The 2IM09/10 can be used as station output card and ingest quality control card
- Generic lines centre probe
- Infrastructure (studio) probing
- Transmission probing

Ordering information Module:

- 2IM09: Dual channel integrity checking probe with built-in frame synchronizers
- 2IM10: Dual channel enhanced integrity checking probe with builtin frame synchronizers

video processing

(A)

Ó

O

 $\hat{\mathbf{O}}$

C

BPX04

elay I-

Ð

Ô

Ô

Ĉ

Ć

С

Ć

BPL11

Standard I/O:

BPL11_2IM09: I/O panel for 2IM09

BPX04_2IM09: I/O panel for 2IM09 with relay bypass

BPL11_2IM10: I/O panel for 2IM10

BPX04_2IM10: I/O panel for 2IM10 with relay bypass

Fiber outputs:

BPL11T2_FC/PC_2IM09: I/O panel for 2IM09 with 2 fiber transmitters on FC/PC

BPL11T2_SC_2IM09: I/O panel for 2IM09 with 2 fiber transmitters on SC

- BPL11T2_FC/PC_2IM10: I/O panel for 2IM10 with 2 fiber transmitters on FC/PC
- BPL11T2_SC_2IM10: I/O panel for 2IM10 with 2 fiber transmitters on SC

Fiber inputs:

- BPL11R2_FC/PC_2IM09: I/O panel for 2IM09 with 2 fiber receivers on FC/PC
- BPL11R2_SC_2IM09: I/O panel for 2IM09 with 2 fiber receivers on SC
- BPL11R2_FC/PC_2IM10: I/O panel for 2IM10 with 2 fiber receivers on FC/PC
- BPL11R2_SC_2IM10: I/O panel for 2IM10 with 2 fiber receivers on SC

CVBS outputs

BPL11C2_2IM09: I/O panel for 2IM09 with 2 CVBS outputs

BPL11C2_2IM10: I/O panel for 2IM10 with 2 CVBS outputs

SDI INPUT A (OPTIONAL FIBER INPUT)	
SDI OUTPUT A-1	
SDI OUTPUT A-2	
SDI OUTPUT A-3 (OPTIONAL FIBER OR CVBS OUTPUT)	
GPI INPUT/OUTPUT	
SDI INPUT B (OPTIONAL FIBER INPUT)	
SDI OUTPUT B-1	
SDI OUTPUT B-2	
SDI OUTPUT B-3 (OPTIONAL FIBER OR CVBS OUTPUT)	

For fiber connectivity see www.axon.tv

Specifications

Serial video input		Re
Standard	625/50 or 525/59.94 SMPTE	Sta
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	Nur
Number of		inp
inputs	2 (1 per channel)	
Equalization	Automatic to 300m	Cor
	@ 270Mb/s with Belden	Sig
	1694A or equivalent cable	Im
Return loss	> 15dB up to 270MHz	
		Ret

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	6 (3 per channel)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

ference video input

Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<9 Watts

2IX08 Dual channel basic integrity checking probe with switch-over function

The 2IX08 is a dual channel basic signal integrity monitor with switch-over function. The difference with the 2IX09 and 2IX10 is that these have an enhanced range of probing functions and 2 built-in frame-synchronizers for clean switching. The switch function can be triggered by any of the integrity controls or by GPI. Each output has a fan-out of 3 and all outputs can be sourced from the same input. The module has the following features:

- SDI carrier detect
- EDH detection
- TRS validation
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel

video processing

Applications

- The 2IX08 can be used as station output card, and ingest quality control card or a generic 2 x 2 switch
- Generic probing with automatic back-up switching

Ordering information

Module:

2IX08: Dual channel basic integrity checking probe with switch-over function

Standard I/O:

BPL11_2IX08: I/O panel for 2IX08

BPX04_2IX08: I/O panel for 2IX08 with relay bypass

Fiber outputs:

BPL11T2_FC/PC_2IX08: I/O panel for 2IX08 with 2 fiber transmitters on FC/PC

BPL11T2_SC_2IX08: I/O panel for 2IX08 with 2 fiber transmitters on SC

Fiber inputs:


- BPL11R2_FC/PC_2IX08: I/O panel for 2IX08 with 2 fiber receivers on FC/PC
- BPL11R2_SC_2IX08: I/O panel for 2IX08 with 2 fiber receivers on SC

CVBS output:

BPL11C2_2IX08: I/O panel for 2IX08 with

2 CVBS outputs

	SDI INPUT A (OPTIONAL FIBER INPUT)
	SDI OUTPUT A-1
	SDI OUTPUT A-2
	SDI OUTPUT A-3 (OPTIONAL FIBER OR CVBS OUTPUT)
	GPI INPUT/OUTPUT
	SDI INPUT B (OPTIONAL FIBER INPUT)
	SDI OUTPUT B-1
	SDI OUTPUT B-2
	SDI OUTPUT B-3 (OPTIONAL FIBER OR CVBS OUTPUT)
Ī	

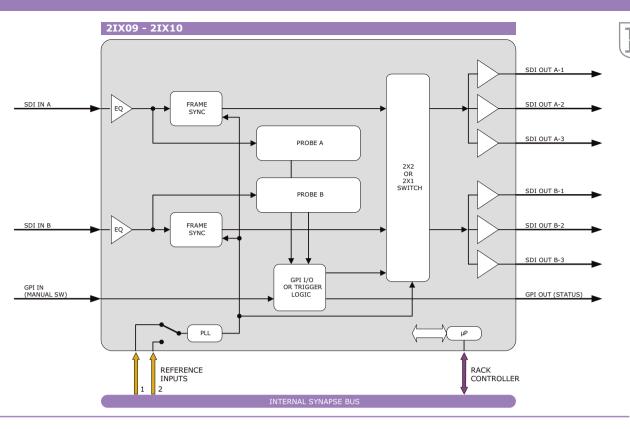
For fiber connectivity see www.axon.tv

Specifications

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	2 (1 per channel)	
Equalization	Automatic to 300m	
	@ 270Mb/s with Belden	
	1694A or equivalent cable	
Return loss	> 15dB up to 270MHz	

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	3 per channel or 6 in 2x1
	mode
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<9 Watts

2IX09 - 2IX10 Dual channel (enhanced) integrity checking probe with switch-over function and frame synchronizer

The 2IX09/10 is a dual channel high performance SDI video and embedded audio probe (signal integrity monitor) with clean switchover function. The difference between the 2IX09 and 2IX10 is that the latter has an enhanced range of probing functions that include phase reversal and macro blocking detection. The 2IX08 is the basic version without the integrated frame synchronizers. The switch function can be triggered by any of the integrity controls or by GPI. Besides the extensive probe functions, the cards also provide full line and frame synchronization on both inputs. Each output has a fan-out of 3 and all outputs can be sourced from the same input. The module has the following features:

- SDI carrier detect
- EDH detection
- TRS validation
- ANC checksum validation*
- Y/Pr/Pb Range validation (64<Y<940, 64< Pr or Pb <960)*
- Video content freeze detection
- Video content black detection
- Video monochrome detection (Stuck C value)*
- Macro blocking detection*
- Timecode availability*
- VI value detection*
- WSS value detection*

- Audio channel detection (16 channels)*
- Audio silence detection (4 pairs)*
- Audio Phase reversal detection within one group (4 pairs)*
- Audio Clip/5 sample full-scale indication (4 pairs)*
- Dolby E present detection*
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel
- Optional 2 CVBS outputs (replacing 2 SDI outputs) on I/O panel
- *= 2IX10 only

Applications

- The 2IX10 can be used as station output card, and ingest quality control card or a generic 2 x 2 switch
- The integrity checking can also be performed for alarm monitoring purposes with the switch function disabled
- Generic probing with automatic back-up switching

Ordering information Module:

- 2IX09: Dual channel integrity checking probe with switch-over function and frame synchronizer
- 2IX10: Dual channel enhanced integrity checking probe with switch over function and frame synchronizer

video processing

(A)

Ó

 \cap

O

 $\hat{\mathbf{O}}$

C

BPX04

elay I-

Ð

Ô

Ô

Ĉ

Ć

С

Ć

BPL11

Standard I/O:

BPL11_2IX09:
 I/O panel for 2IX09

 BPX04_2IX09: I/O panel for 2IX09 with relay bypass

BPL11_2IX10: I/O panel for 2IX10

 BPX04_2IX10: I/O panel for 2IX10 with relay bypass

Fiber outputs:

BPL11T2_FC/PC_2IX09:
 I/O panel for 2IX09 with
 2 fiber transmitters on FC/PC

BPL11T2_SC_2IX09:
 I/O panel for 2IX09 with
 2 fiber transmitters on SC

- BPL11T2_FC/PC_2IX10:
 I/O panel for 2IX10 with
 2 fiber transmitters on FC/PC
- BPL11T2_SC_2IX10:
 I/O panel for 2IX10 with
 2 fiber transmitters on SC

Fiber inputs:

- BPL11R2_FC/PC_2IX09:
 I/O panel for 2IX09 with
 2 fiber receivers on FC/PC
- BPL11R2_SC_2IX09:
 I/O panel for 2IX09 with
 2 fiber receivers on SC
- BPL11R2_FC/PC_2IX10:
 I/O panel for 2IX10 with
 2 fiber receivers on FC/PC
- BPL11R2_SC_2IX10:
 I/O panel for 2IX10 with
 2 fiber receivers on SC

CVBS outputs:

 BPL11C2_2IX09: I/O panel for 2IX09 with 2 CVBS outputs

BPL11C2_2IX10:
 I/O panel for 2IX10 with
 2 CVBS outputs

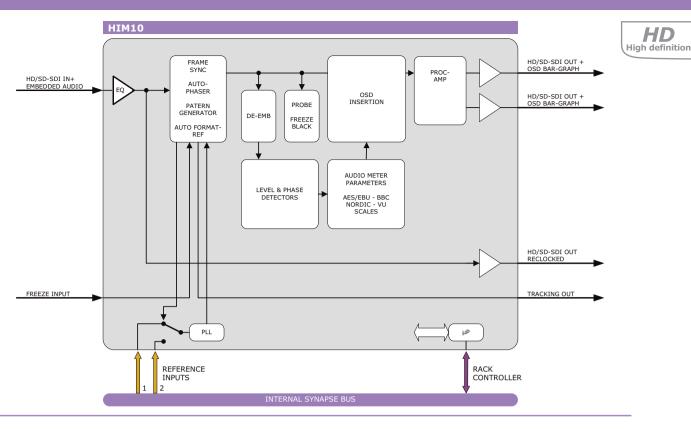
SDI INPUT A (OPTIONAL FIBER INPUT)
SDI OUTPUT A-1
SDI OUTPUT A-2
SDI OUTPUT A-3 (OPTIONAL FIBER OR CVBS OUTPUT)
GPI INPUT/OUTPUT
SDI INPUT B (OPTIONAL FIBER INPUT)
SDI OUTPUT B-1
SDI OUTPUT B-2
SDI OUTPUT B-3 (OPTIONAL FIBER OR CVBS OUTPUT)

Specifications

Serial video input		Refer
Standard	625/50 or 525/59.94 SMPTE	Stand
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	Numb
Number of		inputs
inputs	2 (1 per channel)	
Equalization	Automatic to 300m	Conne
	@ 270Mb/s with Belden	Signal
	1694A or equivalent cable	Impec
Return loss	> 15dB up to 270MHz	
		Retur
SD serial vid	eo output	
Standard	625/50 or 525/59.94 SMPTE	Misce

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	3 per channel or 6 in 2x1
	mode
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

Reference video input


Reference viaco inpac	
Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<9 Watts

HIM10 HD/SD integrity checking/probe with audio and phase OSD bar-graph insertion

The HIM10 is an HD/SD Integrity checking probe with OSD audio level & phase bar graphs. The input can detect loss of input, freeze frame and black level. It is based on a full functioning frame synchronizer with auto phasing capabilities (line-synchronizer). The OSD bargraph features up to 4 audio levels where each bar can be any of the 16 embedded audio channels. The two phase meters show the phase between the bars 1 and 2, and between bar 3 and 4.

- Full HD/SD frame synchronizer
- Compatible with the following standards:
 - 1080i-59.94
 - 1080i-50
 - 1080p-29.97
 - 1080p-25
 - 1080p-24
 - 1035i-59.94
 - 720p-59.94
 - 720p-50
 - SD525
 - SD625
- Synchronize, delay and free-run modes
- Locks to Bi and Tri level syncs
- Offset H and V adjustment
 - Up to 2199 pixels H
 - Up to 1124 lines V

- Manual Freeze
- GPI Freeze
- Field and Frame Freeze modes
- On input loss display:
 - Freeze
 - Black
 - Grey
 - Green
- Built-in Proc-amp with individual controls for Y, Cr, Cb, Y-Black, Cb-Black, Cr-Black
- Line lock mode for better auto-phasing
- Selectable ANC blanking of H. V or H&V
- Delay status information
- Switch status information
- Embedded audio locking to embedded audio clock or Video clock
- 4 free selectable OSD audio level Bar-graphs
- Masked or transparent bar-graphs
- AES/EBU, BBC, Nordic and VU scales
- Picture freeze and black detection between 1 and 4000 frames
- Adjustable thresholds for freeze and black (allows for detection of noisy signals)
- Audio silence detection with adjustable time (1-255 sec) and level (-20 to -100 dBFs)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

video processing

()

 \bigcirc

 \bigcirc

BPH01

Applications

The HIM10 can be used as an active probe in an ingest or lines centre. The unit can also perform audio level and phase insertion (OSD) for use in a lines centre, Control-room and OB van applications.

Ordering information

Module:

HIM10: HD/SD integrity checking/probe with audio and phase OSD bar-graph insertion

Standard I/O:

BPH01_HIM10: I/O panel for HIM10

Fiber outputs:

BPH01T_FC/PC_HIM10: I/O panel for HIM10 with fiber transmitter on FC/PC

BPH01T_SC_HIM10: I/O panel for HIM10 with fiber transmitter on SC

Fiber inputs:

- BPH01R FC/PC HIM10: I/O panel for HIM10 with fiber receiver on FC/PC
- BPH01R_SC_HIM10: I/O panel for HIM10 with fiber receiver on SC

HD/SD-SDI RECLOCKED OUTPUT

HD SDI PROCESSED OSD OUTPUT 1

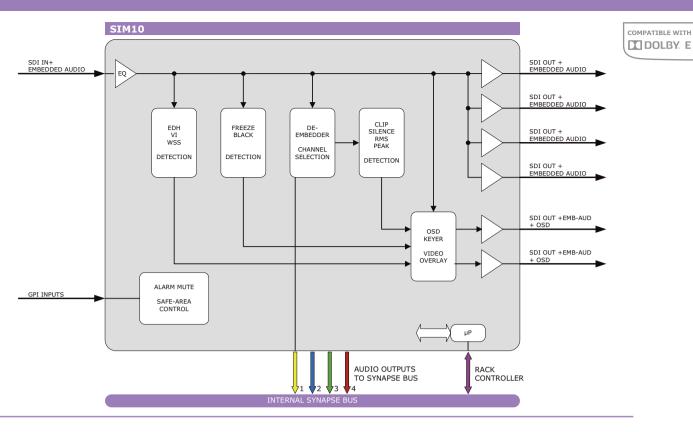
HD SDI PROCESSED OSD OUTPUT 2 (OPTIONAL FIBER OUTPUT)

FREEZE INPUT

TRACKING OUTPUT

For fiber connectivity see www.axon.tv

Specifications


HD/SD Seria	l video input	Overshoot	< 10% of
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 15dB u
	259M-C (270Mb/s) with		> 10dB u
	SMPTE 272M embedded audio	Wideband jitter	< 0.2UI
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	Reference vide	eo input
	SMPTE 296M, SMPTE 349M	Standard	PAL (ITU
	1080i/59.94, 1080i/50,		NTSC (SM
	720p/59.94, 720p/50	Number of	
Equalization	Automatic to 100m	inputs	2 on SFR
	@ 1.5Gb/s with Belden		1 on SFR
	1694A or equivalent cable	Connector	BNC
Return loss	> 15dB up to 1.5GHz	Signal level	1V nomin
		Impedance	High imp
HD/SD seria	l video output		for termin
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 25dB to
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio	Miscellaneous	
	SMPTE 292M (1.5Gb/s),	Weight	Approx. 2
	SMPTE 260M, SMPTE 274M,	Operating	
	SMPTE 296M, SMPTE 349M	temperature	0 °C to +
	SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50,	temperature Dimensions	
	,	•	0 °C to + 137 x 296
Signal level	1080i/59.94, 1080i/50,	•	
Signal level DC offset	1080i/59.94, 1080i/50, 720p/59.94, 720p/50	Dimensions	137 x 296
5	1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal	Dimensions Electrical	
DC offset	1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal	Dimensions Electrical Voltage	137 x 296 +24V to -
DC offset Rise and	1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal 0V ±0.5V	Dimensions Electrical Voltage	137 x 296 +24V to -

noot	< 10% of amplitude
loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
and jitter	< 0.2UI

Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz

Approx. 250g
0 °C to +50 °C
137 x 296 x 20 mm (HxWxD)

Voltage	+24V to +30V
Power	<8 Watts

SIM10 SDI distribution amplifier checking and monitoring signal integrity (with OSD)

The SIM10 is a 1 to 4 distribution amplifier that checks the integrity of a SDI signal, and displays the status of that SDI signal on two processed outputs; the other 4 outputs are re-clocked and de-jittered. The items that can be displayed are: name label, embedded audio channels, level bars, silence, freeze, black, EDH, VLI , WSS and Safe area. The name label is related to the card label. The level bars of the incoming channels are free selectable and the scale of these bars is also selectable: EBU, BBC, NORDIC, VU. "Peak hold' is also an option. The user can select the level of reaction sensitivity of the items: Freeze frame, Black detection and Silence. All items can be switched off when it is not necessary to display them.

- 1 to 4 distribution amplifier
- 2 additional outputs with optional OSD information
- Detection of freeze frame with threshold and time adjustment
- Detection of Black with threshold and time adjustment
- Detection of audio silence with threshold and time adjustment
 (-80 to -40 dBFS within 1-10 seconds)
- 4 (out of any 16) OSD audio bar graphs
- Adjustable colors in Bar ranges
- EBU, Nordic, BBC, VU and dBFS scales
- Safe area markers
 - 16:9_Full
 - 16:9 Shoot & Protect 4:3
 - 16:9 Shoot & Protect 14:9
 - 4:3 Shoot & Protect 14:9
 - 4:3 Action 14:9
 - 4:3 Graphics 14:9
- GPI control of
 - Safe area markers
 - Mute Alarms and event reporting
- EDH, VI and WSS OSD status
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

video processing

- 10

Applications

- Generic station SDI distribution amplifier with probe function
 - With 6 outputs if no OSD is required
- Alarm probe with OSD / audio meters for monitor stacks
- Safe area inserter for camera control

Ordering information Module:

 SIM10: SDI distribution amplifier checking and monitoring signal integrity (with OSD)

Standard I/O:

- BPL01_SIM10: I/O panel for SIM10
- BPL08_SIM10: I/O panel for SIM10
- BPX01_SIM10: I/O panel for SIM10 with relay bypass
- BPX03_SIM10: I/O panel for SIM10 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_SIM10:
 I/O panel for SIM10 with fiber transmitter on FC/PC
- BPL01T_SC_SIM10:
 I/O panel for SIM10 with fiber transmitter on SC
- BPL08T_FC/PC_SIM10:
 I/O panel for SIM10 with fiber transmitter on FC/PC
- BPL08T_SC_SIM10:
 I/O panel for SIM10 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_SIM10:
 I/O panel for SIM10 with fiber receiver on FC/PC
- BPL01R_SC_SIM10: I/O panel for SIM10 with fiber receiver on SC
- BPL08R_FC/PC_SIM10: I/O panel for SIM10 with fiber receiver on FC/PC
- BPL08R_SC_SIM10: I/O panel for SIM10 with fiber receiver on SC

CVBS outputs:

- BPL01C_SIM10: I/O panel for SIM10 with CVBS output
- BPL08C_SIM10: I/O panel for SIM10 with CVBS output

		\bigcirc	\bigcirc	L	\bigcirc
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc				\bigcirc
SDI RECLOCKED OUTPUT	\bigcirc		relay bypass	relay bypass	\bigcirc
SDI RECLOCKED OUTPUT	\bigcirc	\odot	relay b	relay b	\bigcirc
SDI RECL. OUTPUT (OPT. FIBER OR CVBS OUTPUT)	\odot	0			0
SDI RECLOCKED OUTPUT	\bigcirc	\bigcirc	\bigcirc		0
SDI RECLOCKED OUTPUT WITH OSD	\odot	\bigcirc	\bigcirc		\bigcirc
SDI RECLOCKED OUTPUT WITH OSD	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	\bigcirc	\odot			
GPI INPUT (BPL08/BPX03 ONLY)	\bigcirc	\odot			8
	\bigcirc	\bigcirc	\bigcirc		\odot
For fiber connectivity see www.axon.tv	BPL01	BPX01	BPX03		BPL08

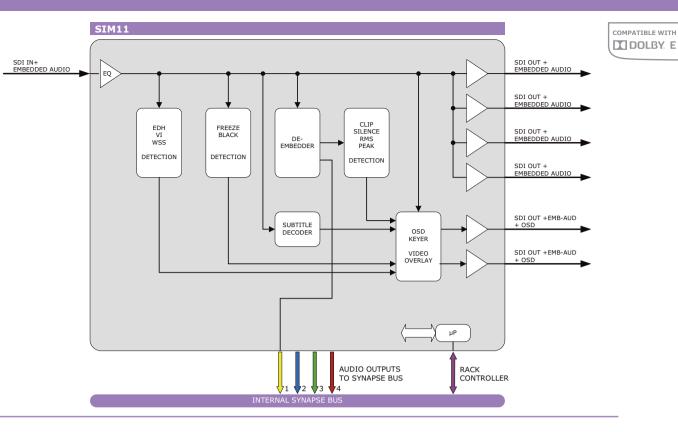
Specifications

Serial video input	
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	1
Equalization	Automatic to 300m @
	270Mb/s with Belden 1694A
	or equivalent cable
	150m with BPX03
Return loss	> 20dB up to 270MHz

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical


Voltage	+24V to +30V
Power	<8 Watts

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	6
	(2 processed and 4 reclocked)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	520ps nominal
Overshoot	< 10% of amplitude
Return loss	> 18dB up to 270MHz
Jitter	< 600ps 10Hz HPF

equarge

video processing

SIM11 SDI distribution amplifier checking and monitoring signal integrity (with OSD) + subtitle decoding

The SIM11 is a 1 to 4 distribution amplifier that checks the integrity of a SDI signal, and displays the status of that SDI signal on two processed outputs; the other 4 outputs are re-clocked and de-jittered. The items that can be displayed are: name label, embedded audio channels, level bars, silence, freeze, black, EDH, VLI, WSS and Safe area. The name label is related to the card label. The level bars of the incoming channels are freely selectable and the scale of these bars is also selectable: EBU, BBC, NORDIC, VU. The user can select the level of reaction sensitivity of the items: Freeze frame, Black detection and Silence. All items can be switched off when it is not necessary to display them. On top of that the SIM11 can show a teletext derived subtile.

- Teletext subtitle decoding and OSD keying
 - Subtitles in white or original colors
 - Adjustable Page selection (100 to 899)
 - Slicing clock adjustment
 - Slicing level adjustment (200 to 550 mV)
- 1 to 4 distribution amplifier
- 2 additional outputs with optional OSD information
- Detection of freeze frame with threshold and time adjustment
- Detection of Black with threshold and time adjustment
- Detection of audio silence with threshold and time adjustment
 (-80 to -40 dBFS within 1-10 seconds)
- 4 (out of any 16) OSD audio bar graphs
- Adjustable colors in Bar ranges
- EBU, Nordic, BBC, VU and dBFS scales
- Safe area markers
 - 16:9_Full
- 16:9 Shoot & Protect 4:3
- 16:9 Shoot & Protect 14:9
- 4:3 Shoot & Protect 14:9
- 4:3 Action 14:9
- 4:3 Graphics 14:9
- EDH, VI and WSS OSD status
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

SIM1

video processing

Ô

Ó

Ô

BPX01

elay bypas

Applications

- Generic station SDI distribution amplifier with probe function
 - With 6 outputs if no OSD is required
- Alarm probe with OSD / audio meters for monitor stacks
- OSD teletext decoding for monitor stacks

Ordering information

Module:

SIM11: SDI distribution amplifier checking and monitoring signal integrity (with OSD), with subtitle decoding

Standard I/O:

- BPL01_SIM11: I/O panel for SIM11
- BPX01_SIM11: I/O panel for SIM11 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_SIM11: I/O panel for SIM11 with fiber transmitter on FC/PC
- BPL01T_SC_SIM11: I/O panel for SIM11 with fiber transmitter on SC

Fiber inputs:

BPL01R_FC/PC_SIM11: I/O panel for SIM11 with fiber receiver on FC/PC

BPL01R_SC_SIM11: I/O panel for SIM11 with fiber receiver on SC

CVBS output:

BPL01C_SIM11: I/O panel for SIM11 with CVBS output

		6
SDI INPUT (OPTIONAL FIBER INPUT)		
SDI RECLOCKED OUTPUT 1	\bigcirc	
SDI RECLOCKED OUTPUT 2	\bigcirc	
SDI RECLOCKED OUTPUT 3 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	
SDI RECLOCKED OUTPUT 4	\bigcirc	
SDI PROCESSED (OSD) OUTPUT 1	\bigcirc	
SDI PROCESSED (OSD) OUTPUT 2	\bigcirc	
	\bigcirc	
	\bigcirc	
For fiber connectivity see www.axon.tv	BPL01	ľ

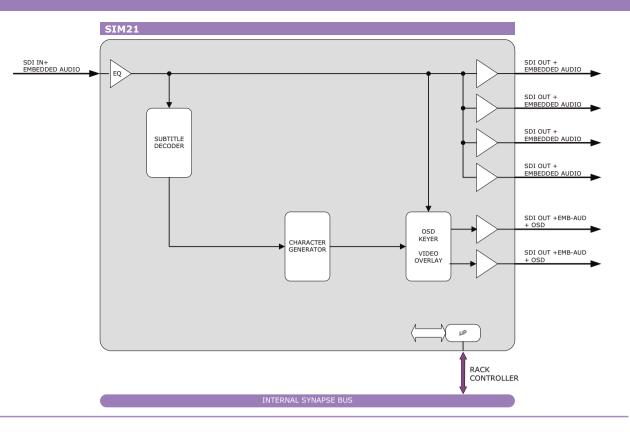
Specifications

Serial video input

Standard 625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio Number of inputs 1 Equalization Automatic to 300m @ 270Mb/s with Belden 1694A or equivalent cable 150m with BPX03 **Return loss** > 20dB up to 270MHz

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	6
	(2 processed and 4 reclocked)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	520ps nominal
Overshoot	< 10% of amplitude
Return loss	> 18dB up to 270MHz
Jitter	< 600ps 10Hz HPF


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts

SIM21 SDI hearing aid subtitles decoder and inserter keyer from Teletext based subtitles

The SIM21 is a 1 to 4 distribution amplifier with teletext derived subtitle insertion in a quality suitable for transmission. This unit inserts and displays fully shaped fonts. Every individual character is designed and stored in memory for an optimum subtitle presentation with white characters on a dark (anti-aliased) background.

- Clean and rendered (transmission ready) subtitle keying from teletext based subtitles
- Manual 2 line subtitle insertion
- Adjustable page for decoding (100 to 899)
- Adjustable subtitle position (0 to 300 pix and 300 to 510 lines)
- Adjustable slicing frequency
- Adjustable slice level (200 to 550 mV)
- 1 to 4 distribution amplifier
- 2 outputs for OSD subtitle insertion
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

video processing

Ó

Ô

Ô

Ô

Ô

O

Ô

Ο

Ó

BPX01

elay bypas:

 (\mathcal{P})

Ô

Ô

Õ

Ô

Ô

Õ

Ô

Ô

Ó

A

Applications

 Transmission subtitle insertion out of teletext based subtitles

Ordering information Module:

 SIM21: SDI hearing aid subtitles decoder and inserter keyer from Teletext base subtitles

Standard I/O:

BPL01_SIM21: I/O panel for SIM21

 BPX01_SIM21: I/O panel for SIM21 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_SIM21: I/O panel for SIM21 with fiber transmitter on FC/PC
- BPL01T_SC_SIM21: I/O panel for SIM21 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_SIM21: I/O panel for SIM21 with fiber receiver on FC/PC
- BPL01R_SC_SIM21:
 I/O panel for SIM21 with fiber receiver on SC

CVBS output:

BPL01C_SIM21:
 I/O panel for SIM21 with
 CVBS output

SDI INPUT (OPTIONAL FIBER INPUT)
SDI RECLOCKED OUTPUT 1
SDI RECLOCKED OUTPUT 2
SDI RECLOCKED OUPUT 3 (OPTIONAL FIBER OR CVBS OUTPUT)
SDI RECLOCKED OUTPUT 4
SDI PROCESSED (OSD) OUTPUT 1
SDI PROCESSED (OSD) OUTPUT 2

For fiber connectivity see www.axon.tv

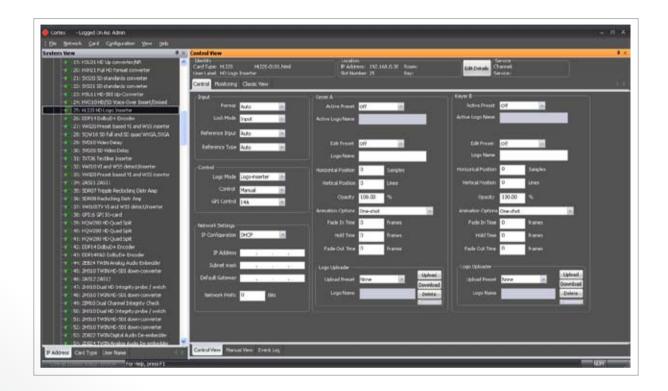
Specifications

Serial video input	
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	1
Equalization	Automatic to 300m @
	270Mb/s with Belden 1694A
	or equivalent cable
	150m with BPX03
Return loss	> 20dB up to 270MHz

SD serial video output

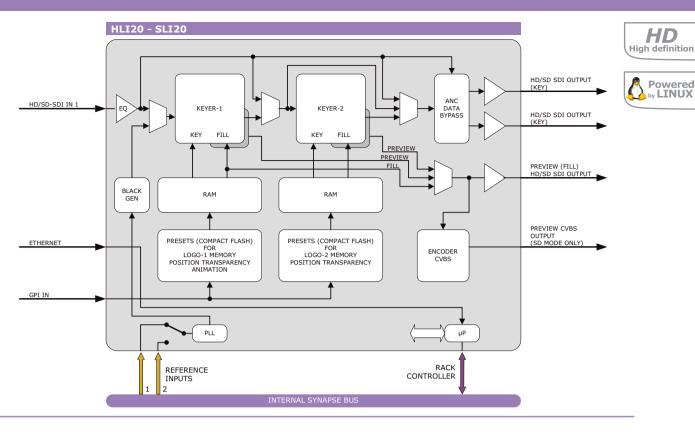
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	6
	(2 processed and 4 reclocked)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	520ps nominal
Overshoot	< 10% of amplitude
Return loss	> 18dB up to 270MHz
Jitter	< 600ps 10Hz HPF

Miscellaneous


Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts


HLI20: Gives direct access for uploading and downloading images to the HLI20 card via WebDAV protocol. Shows the ability for control and status items to be shown on the same page as and when required.

HTI10: Shows the ability to show a mimic the output of the device, resultant text in the color chosen. The color can be optionally chosen using standard Windows Color selection dialogs. Again direct access for uploading and downloading images to the HTI10 card via WebDAV protocol.

Contex - Logged un Act Admin				- T X
and a strength of the strength				
En Sut-oh Ged Cydgrator Yn- 980 refer View	Control View			
rstem View 2 × 1	Line 12 a	Location	Service	
* (PFLIG PD Fixed Logo essenter [192.165.0.51][66]	Card Type HTD0 HTD0-0065.cmi	P Address 132,168,0.28 Room	Edu Details Character	
- 14513 HD Frane Servicement (192, 158.0, 51) [68]	User Label HD Text Inserter	Sot Number 4 Serr	Sevier	
# HPS11 HD Frane Sinchr with enbedder [192.168	Cantrol Monitoring Classic View			1.1
-4 - HPS32HD Frame Synchr with da-anthrobler [192	1990 M			
 HESIS HD Frame Synchronizer with COV [132.16 	Test Hillo workfore two			
 +0413 +D Integrity Honitur [192, 168 0.31][77] 		let hate	Logs Inerter	
 HL20 HD Ligs Siserter [192:168.0.30] [25] HQW00 HD full and SD goad on WIGA.SIGA (192) 	Irout Family Auto	Total Node Serol in	Active Preset 4	
······································	NCCS2003 and and and a	Active Present HD	Active Ling: Name Anontogo.png	
# HOWISHOTUL and aued in NOGA SIG4 [192.16	Aspertitutio #3	and the second se	were country worked and	
+ +HOW700 HD Quet Split [192 165.0.30][2]		Edi Preset ID	A DECEMBER OF A	
# # (HQW000 HD Quel SHE[132 145-5.36][34]	consul	Past Mondone	Edit Proset +	
 HQW200 HD Qual split [192 168.0.30] [40] 	Corecol Planual Inc.	Park State 41 Finals	Lig: Name AnonLogo.gng	
 HOWDO HD Quad Split [192 168 E-30] [41] HOWDO HD Quad Split [192 168 E-30] [7] 	9%-Criteria (144		Happerd al Postican 0 Samples	
 HSUID HD 3014p Converter [112.163.6.21] [77] 	I COLORADO INC.	Scrol Loops Drinte in	Antista Linter of Contract	
I (1901) H0-101 Up-Converse [130:368.0.30] [23]		Send Speed 3 Floots	Rentical Position: 0 Lines	
- HEULEL HD-ID! Up-Converser [182.168.0.31] [78]	Network Settings			
• • • • • • • • • • • • • • • • • • •	9 Contraction Planus In	Bar hip Indext 400 Finds	Opacity 100 Th	
T = (10,00 HD Up commitm /AR [192,108.0.10][15]	CONTRACTOR OF A DAMAGE	Bar Left 23ett 0 Hoels		
* +FSU31 HD Up converter/N# [192.168.0.30][14]	19 Address 152 . 188 . 175 . 5	Bar Kight Litert 0. Posts		
 # #503 HD Up converter/AR [192,168.0.30][17] #0 H011 HO Text Inserter [202,168.0.32][4] 	School made 255 . 255 . 255 . 0			
1 11001010 Yoko Delay [112.160.0.31][79]	STATUTE OF THE OWNER WATER OF THE OWNER OF THE OWNER WATER OF THE OWNER WATER OF THE OWNER WATER OF THE OWNER OF THE OWNER	Ear Header 11 Posts		
 INO10 HD/50 Vace-Over Insert/Ended [152.168] 	Defail General 182 - 168 - 175 - 1	Bar Poster 19 Hudis		
HIVO20 HD/5D Vace Over 3mert/Exbed [192.168	Marca and The State	A CONTRACTOR OF A CONTRACTOR A CONTRA	Logo Ubloader	
+ HHH10H0-80(Occo-Carverser [182.168.0.31][Network Prefix 24 . Dis		totost Nove in Lipbad	
 FORD Pull HC format converses [LR2.168.6.56] [F] 		Tel: Coler 255 255 255 (MA	Download	
 H0H21 Full+O format converse [142.168.0.30] [H0H30 Full+O format converse (142.168.0.30) [Ser Culter 14 70 255 media	Ligt Name	
 Hordo Put Political converse [102:168-0.20][Hordo Put Political converse [110:168-0.20][
+109100 Pull-ID-format converter [130,165.0.20] [Ber Opacity 100 %		
+ +69141 Pull +© format canverse [132.168.0.30] [Palain fire 200 Pares		
+ HOTED Due HD input Synchroftenin/Down [190, 288		NAME AND ADDRESS OF TAXABLE PARTY.		
 +0/13 +ellet (102.368.0.148)(2) 		Fada Out firm 200 Fianas		
 Holl 2: Due Holl roug Synchron (Lease Synchronia) 				
P Address Card Trpe User fame	Caritrol View Namual View Event Log			
				10.94

HLI20 - SLI20 HD/SD preset based dual logo inserter

The HLI20 and SLI20 are logo inserters, with a preset based logo recall function through a flexible user interface and a local storage, multiple logo's including animated ones can be selected through the synapse menu or GPI. The HLI20 is capable of inserting logo's into both HD and SD signals and the SLI20 is SD only.

The HLI20/SLI20 will be used for channel branding with the option to alter the main channel logo on the fly, preset based and simultaneously add a "theme logo" that is triggered as on shot with predefined fade in and fade out times.

- HD-SDI and SD-SDI compatible (SLI20 SD only)
- Formats HLI20:
 - 1080i/50/59.94
 - 720p/50/59.84
 - 625/50
 - 525/59.94
- Formats SLI20:
 - 625/50
 - 525/59.94
- Two individual logo inserters

- Logo A:
 - I6 presets for full HD logos, or 384x216 400 frames of animation with a maximum of 64Mpixels in total
 - H+V position
 - Transparency
 - Fade in time
 - Fade out time
 - Macro: fade in, hold, fade out and animation one shot or loop
- Logo B:
 - 32 presets for 384 x 216 with a maximum 0f 64 Mpixels in total
 - H+V position
 - Transparency
 - Fade in time
 - Fade out time
 - Macro: fade in, hold, fade out and animation one shot or loop
- BCD control of GPI with 5 GPIs + take for bank 1 (16) and 6 GPIs + take for bank 2 (32)
- Selectable priority GPI control for 14 contacts
- 2-level and 3-level sync compatible in generator mode
- Safety relay bypass when using a BHX04
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Logo uploading through dedicated Ethernet port on the BPH04/ BHX04 connector panel
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

GRAPHICS INSERTION

video processing

 \overline{O}

Ó

Ô

Ô

æ

BHX04

elay bypas:

- Full screen static announcements
- Small animations and dynamic theme logo's

Ordering information

Module:

- HLI20: HD/SD preset
 based dual Logo Inserter
- SLI20: SD preset based dual Logo Inserter

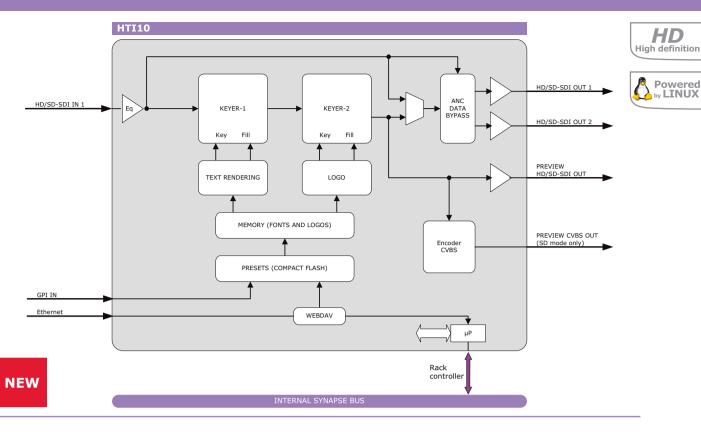
Standard I/O:

BPH04_HLI20: I/O-panel for HLI20

- BHX04_HLI20: I/O-panel with relay bypass for HLI20
- BPH04_SLI20: I/O-panel for SLI20
- BHX04_SLI20: I/O-panel with relay bypass for SLI20

Fiber outputs:

- BPH04T_FC/PC_HLI20: I/O-panel for HLI20 with fiber transmitter on FC/PC
- BPH04T_SC_HLI20: I/O-panel for HLI20 with fiber transmitter on SC
- BPH04T_FC/PC_SLI20: I/O-panel for SLI20 with fiber transmitter on FC/PC
- BPH04T_SC_SLI20: I/O-panel for SLI20 with fiber transmitter on SC


Fiber inputs:

- BPH04R_FC/PC_HLI20:
 I/O-panel for HLI20 with fiber receiver on FC/PC
- BPH04R_SC_HLI20:
 I/O-panel for HLI20 with fiber receiver on SC
- BPH04R_FC/PC_SLI20:
 I/O-panel for SLI20 with fiber receiver on FC/PC
- BPH04R_SC_SLI20: I/O-panel for SLI20 with fiber receiver on SC

	Θ
HD/SD SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc
HD/SD SDI PREVIEW OUTPUT	\bigcirc
HD/SD SDI PROCESSED OUTPUT 1	
HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	0
	\bigcirc
CVBS PREVIEW OUTPUT (SD MODE ONLY)	\bigcirc
ETHERNET AND LOGO UPLOAD	
GPI PRESETS INPUT	
	
	Θ
	BPH04

Specifications

-	l video input	Return loss	> 15dB up to 1.0Gb/s,
Standard	625/50 or 525/59.94 SMPTE		> 10dB up to 1.5Gb/s
	259M-C (270Mb/s) with	Wideband jitter	< 0.2UI
	SMPTE 272M embedded audio		
	SMPTE 292M (1.5Gb/s),	Ethernet	
	SMPTE 274M, SMPTE 296M,	Standard	10Base-T, 100Base-Tx IEEE
	SMPTE 349M		802.3
	1080i/59.94, 1080i/50,	Connector	8P8C
	720p/59.94, 720p/50		
Equalization	Automatic to 100m	Reference vide	eo input
	@ 1.5Gb/s with Belden	Standard	PAL (ITU624-4),
	1694A or equivalent cable		NTSC (SMPTE 170M)
Return loss	> 15dB up to 1.5GHz	Number of	
		inputs	2 on SFR18, 2 on SFR08,
HD/SD seria	l video output		1 on SFR04
Standard	625/50 or 525/59.94 SMPTE	Connector	BNC
	259M-C (270Mb/s) with	Signal level	1V nominal
	SMPTE 272M embedded audio	Impedance	High impedance, with loop
	SMPTE 292M (1.5Gb/s),		for termination
	SMPTE 274M, SMPTE 296M,	Return loss	> 25dB to 10MHz
	SMPTE 349M		
	1080i/59.94, 1080i/50,	Miscellaneous	
	720p/59.94, 720p/50	Weight	Approx. 250g
Signal level	720p/59.94, 720p/50 800mV nominal	Weight Operating	Approx. 250g
Signal level DC offset		-	Approx. 250g 0 °C to +50 °C
-	800mV nominal	Operating	0 °C to +50 °C
DC offset Rise and	800mV nominal	Operating temperature	0 °C to +50 °C
DC offset	800mV nominal 0V ±0.5V	Operating temperature	
DC offset Rise and	800mV nominal 0V ±0.5V 200ps nominal for HD,	Operating temperature Dimensions	0 °C to +50 °C

HTI10 HD/SD-SDI preset based text inserter

The HTI10 is a universal emergency text inserter. An external pc (web) application provides for the possibility to insert a text on top of a partial back ground.

The HTI10 will be used in a transmission chain where the viewer will be prompted by an important message that scrolls x-times over the video with several user adjustable parameters.

- Insert scrolling text and/or a logo over HD or SD SDI video
- Formats:
 - 1080i/50/59.94
 - 720p/50/59.84
 - 625/50
 - 525/59.94
- Preview output for evaluation of result
- Adjustable parameters for text:
 - Background color (individual for HD and SD)
 - Background geometry (individual for HD and SD)
 - Background opacity (individual for HD and SD)
 - User definable text
 - Font
 - Font size (individual for HD and SD)
 - Font color
 - Scroll speed
 - Scroll loops (1, 2, 3, infinite)

- Insert on/off
- Fade-In and Fade-Out length
- Adjustable parameters for logos:
- Position
- Transparency
- Fade-In and Fade-Out length
- HD preview in HD-SDI only
- SD preview in SDI and CVBS
- GPI on/off
- Full control and status monitoring through the front panel of the SFR04/18 frame and the Ethernet port (ACP)
- Full control and logo/font uploading through dedicated Ethernet port on the BPH04 connector panel
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Applications

- (Emergency) Text inserter
- Bug/logo inserter
- Full screen static announcements

Ordering information

Module:

HTI10: HD/SD-SDI preset based text Inserter

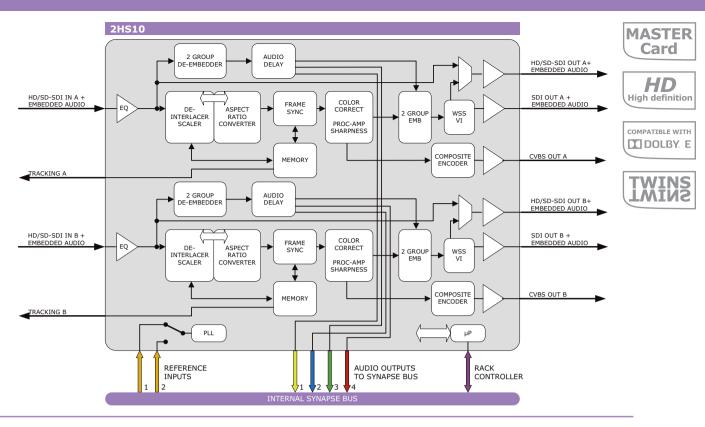
Standard I/O:

- BPH04_HTI10: I/O-panel for HTI10
- BHX04_HTI10: I/O-panel with relay bypass for HTI10

Fiber outputs:

- BPH04T_FC/PC_HTI10: I/O-panel for HTI10 with fiber transmitter on FC/PC
- BPH04T_SC_HTI10: I/O-panel for HTI10 with fiber transmitter on SC

Fiber inputs:


- BPH04R_FC/PC_HTI10: I/O-panel for HTI10 with fiber receiver on FC/PC
- BPH04R_SC_HTI10: I/O-panel for HTI10 with fiber receiver on SC

	€	\bigcirc
HD/SD SDI INPUT (OPTIONAL FIBER INPUT)		\bigcirc
HD/SD SDI PREVIEW OUTPUT		\bigcirc
HD/SD SDI PROCESSED OUTPUT 1	\bigcirc	\odot
HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)		
		\odot
CVBS PREVIEW OUTPUT (SD MODE ONLY)		
CONTROL AND UPLOAD (ETHERNET)		
GPI PRESETS		
	Θ	\bigcirc
	BPH04	BPX04

Specifications

HD/SD seria	video input	Overshoot	< 10% of amplitude
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 15dB up to 1.0Gb/s,
	259M-C (270Mb/s) with		> 10dB up to 1.5Gb/s
	SMPTE 272M embedded audio	Wideband jitter	< 0.2UI
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	Reference vide	eo input
	SMPTE 296M, SMPTE 349M	Standard	PAL (ITU624-4), NTSC
	1080i/59.94, 1080i/50,		(SMPTE 170M)
	720p/59.94, 720p/50	Number of inputs	2 on SFR18, 2 on SFR08,
Equalization	Automatic to 100m @		1 on SFR04
	1.5Gb/s with Belden 1694A	Connector	BNC
	or equivalent cable.	Signal level	1V nominal
Return loss	> 15dB up to 1.5GHz	Impedance	High impedance, with loop
			for termination
HD serial vid	eo output	Return loss	> 25dB to 10MHz
Standard	625/50 or 525/59.94 SMPTE		
	259M-C (270Mb/s) with	Miscellaneous	
	SMPTE 272M embedded audio	Weight	Approx. 250g
	SMPTE 292M (1.5Gb/s),	Operating	
	SMPTE 260M, SMPTE 274M,	temperature	0 °C to +50 °C
	SMPTE 296M, SMPTE 349M	Dimensions	137 x 296 x 20 mm (HxWxD)
	1080i/59.94, 1080i/50,		
	720p/59.94, 720p/50	Electrical	
Signal level	800mV nominal	Voltage	+24V to +30V
DC offset	0V ±0.5V	Power	<10 Watts
Rise and			
fall time	200ps nominal for HD, 750ps		
	nominal for SD		

elay bypass

2HS10 Dual channel high-end HD-SDI to SD-SDI/composite down converter with de-embedding function

The 2HS10 is a dual channel ultra high-quality down converter. The optimized scaling and filter algorithms ensure crisp broadcast ready pictures from a native HD source, by the use of a 64 tap FIR filters. The 2HS10 will allow you to simulcast SD signals from a native HD infrastructure. The embedded audio is carried over into the SD domain; the appropriate aspect ratio can be applied and the correct VI or WSS data can be added. Each channel has a composite monitoring output. Each channel has a 2 group de-embedder which lets you de-embed audio to the Synapse bus.

- 2 independent channels, these have to be the same format
- Frame-synchronizer on SD outputs with control of H and V delay
- HD-SDI or SD-SDI input (auto selecting)
- 1080i or 720p 50 to 625/50
- 1080i or 720p 59.94 to 525/59.94
- 1080p or 720p 25 to 625/50
- 1080p or 720p 29.97 to 525/59.94
- 1080p or 720p 23.98 to 525/59.94
- Correct color space conversion (709-601)
- 3 outputs per channel
 - 1 HD/SD selectable output
 - 1 SD output
 - 1 CVBS output

- Built-in ARC for 4:3 pan-scan,14:9, 16:9 letterbox and anamorphic output formats
- Built-in color corrector
- H+V sharpness control (picture enhancements)
- Proc-amp and color corrector
- De-embeds 8 channels of audio to the Synapse internal bus
- Fully independent WSS and VI insertion
- 4:3 Safe area generator on SD-SDI output
- I/O delay measurement
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel

2HS10

VIDEO FORMAT CONVERSION

Applications

- Broadcast quality down conversion with monitoring function
- Generic (monitoring) down conversion
- Down conversion with analog or digital audio embedding (requires an additional ADD-ON card such as the DIO24)
- High density applications as in OB-Trucks

Ordering information

Module:

2HS10: Dual channel high-end HD-SDI to SD-SDI / composite down converter with de-embedding function

Standard I/O:

BPH05_2HS10: I/O-panel for 2HS10

Fiber outputs:

- BPH05T2_FC/PC_2HS10: I/O-panel for 2HS10 with 2 fiber transmitter on FC/PC
- BPH05T2 SC 2HS10: I/O-panel for 2HS10 with 2 fiber transmitter on SC

Fiber inputs:

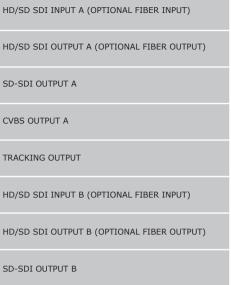
- BPH05R2_FC/PC_2HS10: I/O-panel for 2HS10 with 2 fiber receiver on FC/PC
- BPH05R2_SC_2HS10: I/O-panel for 2HS10 with 2 fiber receiver on SC

Specifications

HD/SD serial	video input	
Standard	625/50 or 525/59.94 SMPTE	НС
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	SE
	SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,	CV
	SMPTE 296M, SMPTE 349M	CV
	1080i/59.94, 1080i/50,	TD
	720p/59.94, 720p/50	TR
Number of		
inputs	2 (1 per channel)	H
Equalization	Automatic to 100m	
	@ 1.5Gb/s with Belden	H
	1694A or equivalent cable.	
Return loss	> 15dB up to 1.5GHz	SE
HD/SD serial	video output	C\
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	_

- SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 Number of 2 (1 per channel) Signal level 800mV nominal 0V ±0.5V Rise and fall time 200ps nominal for HD, 750ps
 - nominal for SD < 10% of amplitude > 15dB up to 1.0Gb/s, > 10dB up to 1.5Gb/s

SD serial video output


outputs

DC offset

Overshoot

Return loss

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded
	audio
Number of	
outputs	2 (1 per channel)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz
Return loss	> 15dB at 270Mb/s
Wideband jitter	< 0.2UI
Video delay	minimum of 56 SD lines,
	maximum 1F +56 lines

VBS OUTPUT B

For fiber connectivity see www.axon.tv

Analog video output

5	•
Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M)
Number of	
outputs	2 (1 per channel)
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

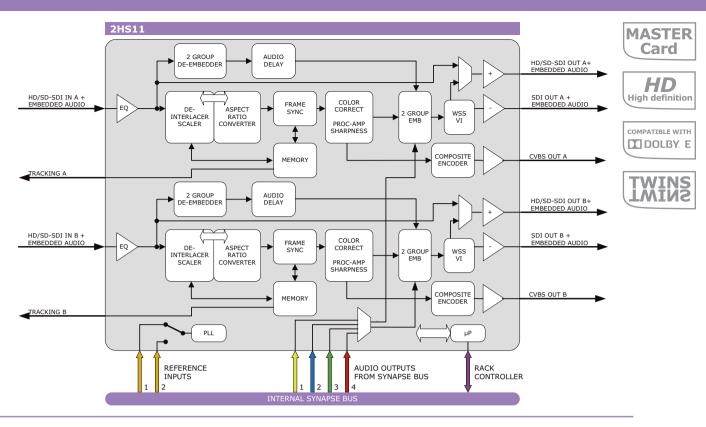
Voltage	+24V to +30V
Power	<12 Watts

(A)

O

0

0


0

0

Ô

Ó

BPH05

2HS11 Dual channel high-end HD-SDI to SD-SDI/composite down converter with embedding function

The 2HS11 is a dual channel ultra high-quality down converter. The optimized scaling and filter algorithms ensure crisp broadcast ready pictures from a native HD source, by the use of a 64 tap FIR filters. The 2HS11 will allow you to simulcast SD signals from a native HD infrastructure. The embedded audio is carried over into the SD domain; the appropriate aspect ratio can be applied and the correct VI or WSS data can be added. Each channel has a composite monitoring output. Each channel has a 2 group embedder which lets you embed audio from the Synapse bus.

- 2 independent channels, these have to be the same format
- Frame-synchronizer on SD outputs with control of H and V delay
- HD-SDI or SD-SDI input (auto selecting)
- 1080i or 720p 50 to 625/50
- 1080i or 720p 59.94 to 525/59.94
- 1080p or 720p 25 to 625/50
- 1080p or 720p 29.97 to 525/59.94
- 1080p or 720p 23.98 to 525/59.94
- Correct color space conversion (709-601)
- 3 outputs per channel
 - 1 HD/SD selectable output
 - 1 SD output
 - 1 CVBS output

- Built-in ARC for 4:3 pan-scan,14:9, 16:9 letterbox and anamorphic output formats
- Built-in color corrector
- H+V sharpness control (picture enhancements)
- Proc-amp and color corrector
- Embeds 8 channels of audio from the Synapse internal bus
- Fully independent WSS and VI insertion
- 4:3 Safe area generator on SD-SDI output
- I/O delay measurement
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 2 fiber inputs (replacing 2 SDI inputs) or 2 fiber outputs (replacing 2 SDI outputs) on I/O panel

2HS11

VIDEO FORMAT CONVERSION

Applications

- Broadcast quality down conversion with monitoring function
- Generic (monitoring) down conversion
- Down conversion with analog or digital audio embedding (requires an additional ADD-ON card such as the DIO24)
- High density applications as in OB-Trucks

Ordering information

Module:

2HS11: Dual channel high-end HD-SDI to SD-SDI / composite down converter with embedding function

Standard I/O:

BPH05_2HS11: I/O-panel for 2HS11

Fiber outputs:

- BPH05T2_FC/PC_2HS11: I/O-panel for 2HS11 with 2 fiber transmitter on FC/PC
- BPH05T2 SC 2HS11: I/O-panel for 2HS11 with 2 fiber transmitter on SC

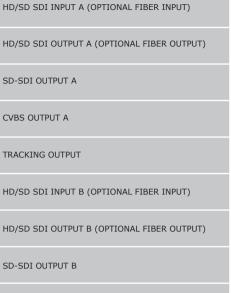
Fiber inputs:

- BPH05R2_FC/PC_2HS11: I/O-panel for 2HS11 with 2 fiber receiver on FC/PC
- BPH05R2_SC_2HS11: I/O-panel for 2HS11 with 2 fiber receiver on SC

Specifications

HD/SD seria		
Standard	625/50 or 525/59.94 SMPTE	HD/SD SDI OUTF
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	SD-SDI OUTPUT
	SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,	CVBS OUTPUT A
	SMPTE 296M, SMPTE 349M	CVDS CONTON A
	1080i/59.94, 1080i/50,	
	720p/59.94, 720p/50	TRACKING OUTP
Number of		
inputs	2 (1 per channel)	HD/SD SDI INPU
Equalization	Automatic to 100m	
	@ 1.5Gb/s with Belden	HD/SD SDI OUTF
	1694A or equivalent cable.	
Return loss	> 15dB up to 1.5GHz	SD-SDI OUTPUT
HD/SD serial video output		CVBS OUTPUT B
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	For fiber connect
	SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,	Analog vide

SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 2 (1 per channel) 800mV nominal


Signal level	800mV nominal
DC offset	0V ±0.5V
Rise and fall time	200ps nominal for HD, 750ps
	nominal for SD
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s

SD serial video output

Number of

outputs

	-
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	2 (1 per channel)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz
Return loss	> 15dB at 270Mb/s
Wideband jitter	< 0.2UI
Video delay	minimum of 56 SD lines,
	maximum 1F +56 lines

fiber connectivity see www.axon.tv

nalog video output

Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M)
Number of	
outputs	2 (1 per channel)
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

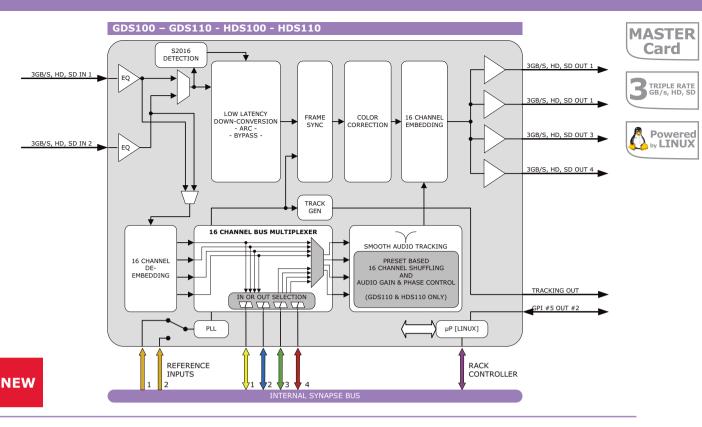
Voltage	+24V to +30V
Power	<12 Watts

(A)

O

0

0


0

0000

Ó

BPH05

GDS100 - GDS110 - HDS100 - HDS110 3Gb/s, HD, SD down converter/ synchronizer with optional audio shuffler

The GDS100/110 and HDS100/110 are low latency down converters with 16 channel audio transparency. The powerful matrix multiplexer can feed audio from the embedded domain into the Synapse bus to an ADD-ON card like the DIO48. This matrix multiplexer also allows for audio to be inserted from the ADD-ON bus into the embedded domain of the GDS100/110 or HDS100/110.

The GDS110 or HDS110 add a full audio shuffler and audio procamp with gain and phase control.

The GDS100/110 are compatible with 270Mb/s, 1.5Gb/s and 3Gb/s for full 1080p/50 or 1080p/59.94 use. The HDS100/110 are compatible with SD-SDI (270Mb/s) and HD-SDI (1.5Gb/s) and can be future upgraded to 3Gb/s compatibility.

- Low latency conversion process (as low as 1 field in controlled timing environment)
- Down-conversion from 2 selectable SDI inputs
- Down conversion (including 1080p to SD-SDI)
- 5 GPI inputs for ARC and Shuffle triggers
- Transparent for 16 channels of embedded audio
- Embedded domain audio shuffling, gain and phase control (GDS - HDS110 only)
- Embedding through synapse bus
- De-embedding to Synapse bus with transparent input to output handling
- Video proc-amp (Y and C control)
- Color corrector (RGB and total gain, RGB and total black)
- Hue control for NTSC inputs
- Compatible with:
 - 270 Mbit/s (SMPTE 259M) 50 and 59.94Hz
 - 1485 Mbit/s (SMPTE 292M) 50 and 59.94Hz
 - 2970 Mbit/s (SMPTE 424M) 50 and 59.94Hz (GDS100/110 only)

Conversion abilities

The GDS-HDS100/110 can handle the following conversions:

								0	utp	ut						
	CONVERSION	1080p29.97	1080p25	1080p23.97	1035i59.97	1080p50*	1080p59.94*	1080i59.94	1080i50	720p59.94	720p50	720p29.97	720p25	720p23.98	480i59.94(525)	576i50(625)
	1080p29.97															
	1080p25															
	1080p23.97															
	1035i59.97															
	1080p50*															
	1080p59.94*															
÷	1080i59.94															
Input	1080i50															
H	720p59.94															
	720p50															
	720p29.97															
	720p25															
	720p23.98															
	480i59.94(525)															
	576i50(625)															

 3GB/S, HD, SD INPUT 1
 Image: Content of the second sec

BPH17

* = GDS models only

Applications

 Transmission output down conversion with backup input

Ordering information

Module:

- GDS100: 3Gb/s, HD, SD down converter
- GDS110: 3Gb/s, HD, SD down converter with audio shuffler proc-amp
- HDS100: HD, SD down converter*
- HDS110: HD, SD down converter with audio shuffler proc-amp*

Standard I/O:

- BPH17_GDS100: I/O-panel for GDS100 with RJ45 GPI/O
- BPH17_GDS110: I/O-panel for GDS110 with RJ45 GPI/O
- BPH17_HDS100: I/O-panel for HDS100 with RJ45 GPI/O
- BPH17_HDS110: I/O-panel for HDS110 with RJ45 GPI/O

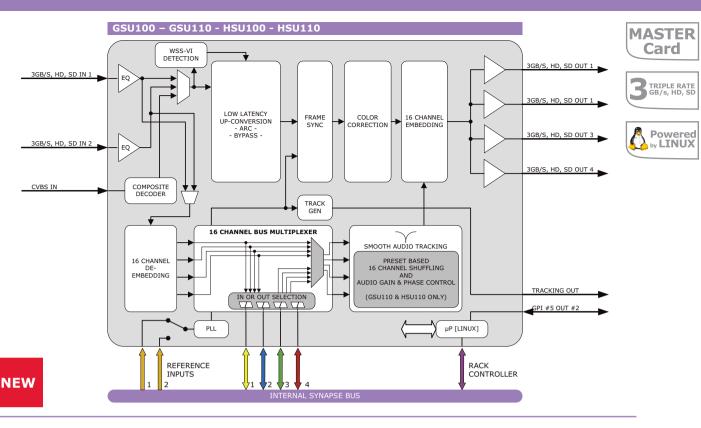
Specifications

Serial video in	put
Standard	SD,HD and 3Gb/s SDI:
	SMPTE 292M, SMPTE 259M,
	SMPTE424
Number of inputs	2
Connector	BNC
Equalization	Typical maximum equalized
	length of Belden 1694A
	cable: 90m at 2.97Gb/s,
	120m at 1.485Gb/s, and
	250m at 270Mb/s
Return loss	> 15dB up to 1.5GHz

Serial video output

Number of	
outputs	4
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	135ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.5GHz (typ.)
	> 10dB up to 3GHz (typ.)
Wideband jitter	< 0.2UI

Miscellaneous


	-
Weight	Approx. 450g
Operating	
temperature	0 °C to +40 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<17 Watts

GDS100 - GDS110 HDS100 - HDS110

GSU100 - GSU110 - HSU100 - HSU110 3Gb/s, HD, SD up converter/synchronizer with optional audio shuffler

The GSU100/110 and HSU100/110 are low latency up, converters with 16 channel audio transparency. The powerful matrix multiplexer can feed audio from the embedded domain into the Synapse bus to an ADD-ON card like the DIO48. This matrix multiplexer also allows for audio to be inserted from the ADD-ON bus into the embedded domain of the GSU100/110 or HSU100/110.

The GSU110 or HSU110 add a full audio shuffler and audio proc-amp with gain and phase control.

The GSU100/110 are compatible with 270Mb/s, 1.5Gb/s and 3Gb/s for full 1080p/50 or 1080p/59.94 use. The HSU100/110 are compatible with SD-SDI (270Mb/s) and HD-SDI (1.5Gb/s) and can be future upgraded to 3Gb/s compatibility.

- Low latency conversion process (as low as 6ms in controlled timing environment)
- Up conversion from 2 selectable SDI inputs or a CVBS input
- 5 GPI inputs for ARC and Shuffle triggers
- Transparent for 16 channels of embedded audio
- Embedded domain audio shuffling, gain and phase control (GSU - HSU110 only)
- Embedding through synapse bus
- De-embedding to Synapse bus with transparent input to output handling
- Video proc-amp (Y and C control)

- Color corrector (RGB and total gain, RGB and total black)
- Hue control for NTSC inputs
- Compatible with:
 - 270 Mbit/s (SMPTE 259M) 50 and 59.94Hz
 - 1485 Mbit/s (SMPTE 292M) 50 and 59.94Hz
 - 2970 Mbit/s (SMPTE 424M) 50 and 59.94Hz (GSU100/110 only)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Conversion abilities

See page 257.

 \bigcirc

Applications

- Truck input up converter/ synchronizer
- Infra structure up/down/ cross conversion

Ordering information

Module:

- GSU100: 3Gb/s, HD, SD-SDI up converter
- GSU110: 3Gb/s, HD, SD-SDI up converter with audio shuffler proc-amp
- HSU100: HD, SD-SDI up converter*
- HSU110: HD, SD-SDI up converter with audio shuffler proc-amp*

Standard I/O:

- BPH17_GSU100:
 I/O-panel for GSU100 with
 RJ45 GPI/O
- BPH17_GSU110: I/O-panel for GSU110 with RJ45 GPI/O
- BPH17_HSU100:
 I/O-panel for HSU100 with
 RJ45 GPI/O
- BPH17_HSU110: I/O-panel for HSU110 with RJ45 GPI/O
- * Upgradeable to 3Gb/s

3GB/S, HD, SD INPUT 1	Ó
3GB/S, HD, SD INPUT 2	Ó
3GB/S, HD OUTPUT 1	Ó
3GB/S, HD OUTPUT 2	Ó
GPI INPUT/OUTPUT	
3GB/S, HD OUTPUT 3	0
3GB/S, HD OUTPUT 4	0
	Ô
CVBS INPUT	\bigcirc

Specifications

Standard	SD,HD and 3Gb/s SDI:
	SMPTE 292M, SMPTE 259M,
	SMPTE424
Number of inpu	ts 2
Connector	BNC
Equalization	Typical maximum equalized
	length of Belden 1694A
	cable: 90m at 2.97Gb/s,
	120m at 1.485Gb/s, and
	250m at 270Mb/s
Return loss	> 15dB up to 1.5GHz
	· 1002 0p to 1100112

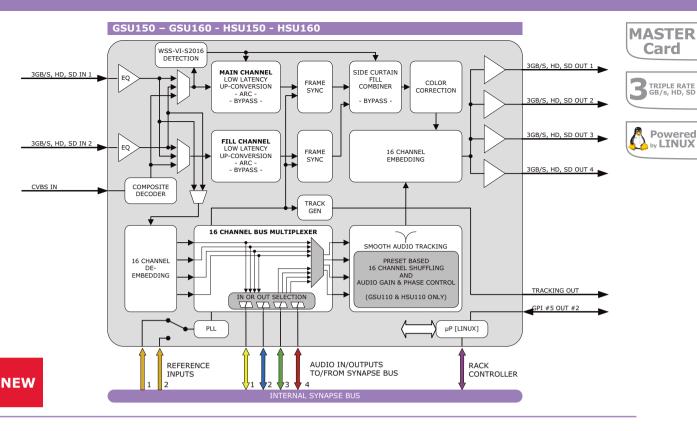
CVBS video input

PAL (ITU624-4), NTSC
(SMPTE 170M)
1
75 Ohms
> 35dB up to 10MHz
< ±0.25dB (100KHz to
4.2MHz)
$< \pm 0.5\%$ typical
< ±0.2° typical
< -57dB RMS (black video,
15KHz to 5MHz)
< ±0.5%
< ±9ns
3 lines

Serial video output

outputs	4
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	135ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.5GHz (typ)
	> 10dB up to 3GHz (typ)
Wideband jitter	< 0.2UI

Miscellaneous


Approx. 450g
0 °C to +40 °C
137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<17 Watts

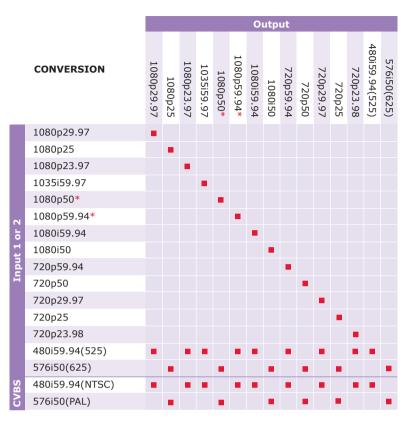
BPH17

255

GSU150 - GSU160 HSU150 - HSU160

GSU150 - GSU160 - HSU150 - HSU160 3Gb/s, HD, SD up converter/synchronizer with side curtain input and optional audio shuffler

The GSU150/160 and HSU150/160 are low latency up, down, cross converters with 16 channel audio transparency. The powerful audio matrix multiplexer can transport audio from the embedded domain to the Synapse bus and vice versa.


The GSU160 or HSU160 add a full audio shuffler and audio procamp with gain and phase control.

The GSU150/160 are compatible with 270Mb/s, 1.5Gb/s and 3Gb/s for full 1080p/50 or 1080p/59.94 use. The HSU150/160 are compatible with SD-SDI (270Mb/s) and HD-SDI (1.5Gb/s) and can be future upgraded to 3Gb/s compatibility.

- Low latency conversion process (as low as 6ms in controlled timing environment)
- Up conversion from 2 selectable SDI inputs or a CVBS input
- 5 GPI inputs for ARC and Shuffle triggers
- Transparent for 16 channels of embedded audio
- Side wing/curtain up-conversion for 4:3 pillarbox on graphics background
- Embedded domain audio shuffling, gain and phase control (GSU - HSU160 only)
- Embedding through synapse bus
- De-embedding to Synapse bus with transparent input to output handling
- Video proc-amp (Y and C control)
- Color corrector (RGB and total gain, RGB and total black)
- Hue control for NTSC inputs
- Compatible with:
 - 270 Mbit/s (SMPTE 259M) 50 and 59.94Hz
 - 1485 Mbit/s (SMPTE 292M) 50 and 59.94Hz
 - 2970 Mbit/s (SMPTE 424M) 50 and 59.94Hz (GSU150/160 only)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Conversion abilities

The G-HSU150/160 cards are able to convert the following video formats:

4 3GB/S, HD, SD INPUT 1 Ô \bigcirc 3GB/S, HD, SD INPUT 2 Ô 3GB/S, HD OUTPUT 1 Ô 3GB/S, HD OUTPUT 2 GPI INPUT/OUTPUT 0 3GB/S, HD OUTPUT 3 3GB/S, HD OUTPUT 4 \bigcirc Ó CVBS INPUT

BPH17

* = GSU models only

Applications

- Truck input up converter/ synchronizer
- Infra structure up/down/ cross conversion
- Up conversion with side-fill/ curtain input

Ordering information

Module:

- GSU150: 3Gb/s, HD, SD-SDI up converter
- GSU160: 3Gb/s, HD, SD-SDI up with audio shuffler procamp
- HSU150: HD, SD-SDI up converter*
- HSU160: HD, SD-SDI up converter with audio shuffler proc-amp*

Standard I/O:

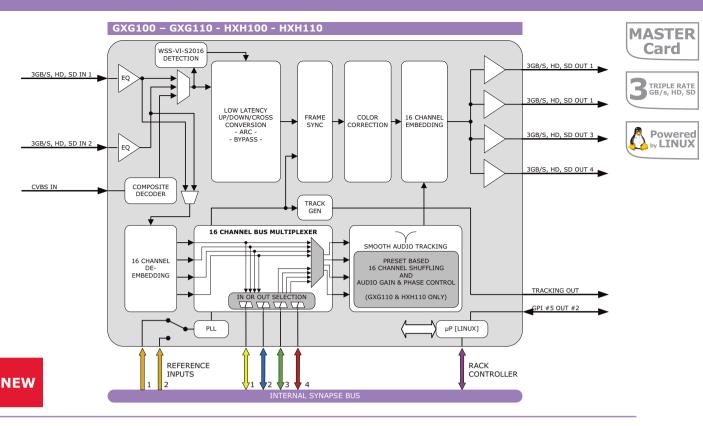
- BPH17_GSU150: I/O-panel for GSU150 with RJ45 GPI/O
- BPH17_GSU160: I/O-panel for GSU160 with RJ45 GPI/O
- BPH17_HSU150: I/O-panel for HSU150 with RJ45 GPI/O
- BPH17_HSU160: I/O-panel for HSU160 with RJ45 GPI/O

Specifications

Serial video in	put
Standard	SD,HD and 3Gb/s SDI:
	SMPTE 292M, SMPTE 259M,
	SMPTE424
Number of inputs	s 2
Connector	BNC
qualization	Typical maximum equalized
	length of Belden 1694A cable:
	90m at 2.97Gb/s, 120m at
	1.485Gb/s, and 250m at
	270Mb/s
Return loss	> 15dB up to 1.5GHz
VBS video in	put
tandard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
umber of inputs	s 1
mpedance	75 Ohms
eturn loss	> 35dB up to 10MHz
requency	
esponse	< ±0.25dB (100KHz to
	4.2MHz)
ifferential gain	< ±0.5% typical
ifferential	
hase	< ±0.2° typical
loise floor	< -57dB RMS (black video,
	15KHz to 5MHz)

C/L gain	< ±0.5%
C/L delay	< ±9ns
Minimum delav	3 lines

Serial video output


Number of	
outputs	4
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	135ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.5GHz (typ)
	> 10dB up to 3GHz (typ)
Wideband jitter	< 0.2UI

Miscellaneous

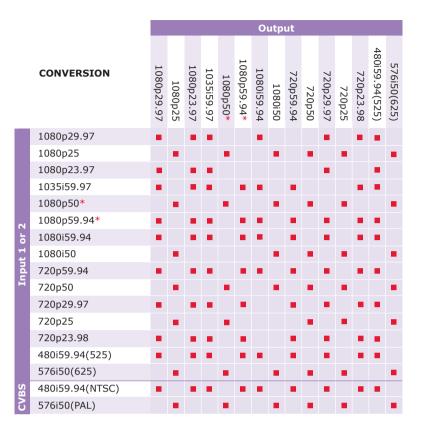
Weight	Approx. 450g
Operating	
temperature	0 °C to +40 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

/oltage	+24V to +30V
Power	<17 Watts

GXG100 - GXG110 - HXH100 - HXH110 3Gb/s, HD, SD up/down/cross converter/synchronizer with optional audio shuffler

The GXG100/110 and HXH100/110 are low latency up, down, cross converters with 16 channel audio transparency. The powerful audio matrix multiplexer can transport audio from the embedded domain to the Synapse bus and vice versa.


The GXG110 or HXH110 add a full audio shuffler and audio proc-amp with gain and phase control.

The GXG100/110 are compatible with 270Mb/s, 1.5Gb/s and 3Gb/s for full 1080p/50 or 1080p/59.94 use. The HXH100/110 are compatible with SD-SDI (270Mb/s) and HD-SDI (1.5Gb/s) and can be future upgraded to 3Gb/s compatibility.

- Low latency conversion process (as low as 1 field in controlled timing environment)
- Up-conversion from 2 selectable SDI inputs or a CVBS input
- Up-conversion from 720p or 1080i to 1080p (equal frame-rate)
- Down conversion (including 1080p to SD-SDI)
- Cross conversion 720p to 1080i and vice versa
- 5 GPI inputs for ARC and Shuffle triggers
- Transparent for 16 channels of embedded audio
- Embedded domain audio shuffling, gain and phase control (GXG-HXH110 only)
- Embedding through synapse bus
- De-embedding to Synapse bus with transparent input to output handling
- Video proc-amp (Y and C control)
- Color corrector (RGB and total gain, RGB and total black)
- Hue control for NTSC inputs
- Compatible with:
 - 270 Mbit/s (SMPTE 259M) 50 and 59.94Hz
 - 1485 Mbit/s (SMPTE 292M) 50 and 59.94Hz
 - 2970 Mbit/s (SMPTE 424M) 50 and 59.94Hz (GXG100/110 only)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Conversion abilities

The GXG-HXH100/110 cards are able to convert the following video formats:

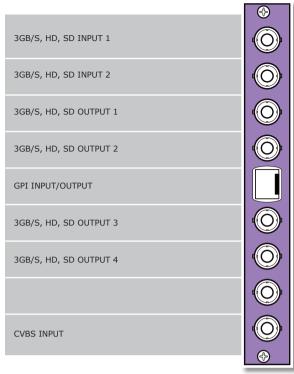
* = GXG models only

Applications

- Truck input up converter/ synchronizer
- Infra structure up/down/ cross conversion

Ordering information Module:

- **GXG100:** 3Gb/s, HD, SD-SDI
- up/down/cross converter **GXG110:** 3Gb/s, HD, SD-SDI
- up/down/cross converter with audio shuffler proc-amp
- HXH100: HD, SD-SDI up/ down/cross converter*
- HXH110: HD, SD-SDI up/ down/cross converter with audio shuffler proc-amp*


Standard I/O:

- BPH17_GXG100: I/O-panel for GXG100 with RJ45 GPI/O
- BPH17_GXG110: I/O-panel for GXG110 with RJ45 GPI/O
- BPH17_HXH100: I/O-panel for HXH100 with RJ45 GPI/O
- BPH17_HXH110: I/O-panel for HXH110 with RJ45 GPI/O

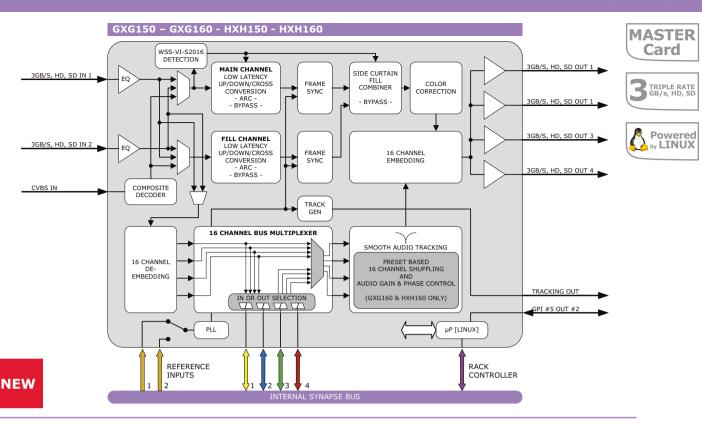
Specifications

Serial video input

Standard	SD,HD and 3Gb/s SDI:	
	SMPTE 292M, SMPTE 259M,	C/L gain
	SMPTE424	C/L delay
Number of inputs	2	
Connector	BNC	Serial vide
Equalization	Typical maximum equalized	Number of
	length of Belden 1694A	outputs
	cable: 90m at 2.97Gb/s,	Connector
	120m at 1.485Gb/s, and	Signal level
	250m at 270Mb/s	DC offset
Return loss	> 15dB up to 1.5GHz	Rise/fall tir
		Overshoot
CVBS video inp	out	Return loss
Standard	PAL (ITU624-4), NTSC	
	(SMPTE 170M)	Wideband j
Number of inputs	1	
Impedance	75 Ohms	Miscellane
Return loss	> 35dB up to 10MHz	Weight
Frequency		Operating
response	< ±0.25dB (100KHz to	temperatur
	4.2MHz)	Dimensions
Differential gain	< ±0.5% typical	
Differential		Electrical
Differential phase	< ±0.2° typical	Electrical Voltage

BPH17

Noise floor	< -57dB RMS (black video,
	15KHz to 5MHz)
C/L gain	< ±0.5%
C/L delay	< ±9ns


eo output

	•
Number of	
outputs	4
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	135ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.5GHz (typ.)
	> 10dB up to 3GHz (typ.)
Wideband jitter	< 0.2UI

eous

Weight	Approx. 450g
Operating	
temperature	0 °C to +40 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Voltage	+24V to +30V
Power	<17 Watts

GXG150 - GXG160 HXH150 - HXH160

GXG150 - GXG160 - HXH150 - HXH160. 3Gb/s, HD, SD up/down/cross converter/synchronizer with side curtain conversion and optional audio shuffler

The GXG150/160 and HXH150/160 are low latency up, down, cross converters with 16 channel audio transparency. The powerful audio matrix multiplexer can transport audio from the embedded domain to the Synapse bus and vice versa. The GXG160 or HXH160 add a full audio shuffler and audio proc-amp with gain and phase control.

The GXG150/160 are compatible with 270Mb/s, 1.5Gb/s and 3Gb/s for full 1080p/50 or 1080p/59.94 use. The HXH150/160 are compatible with SD SDI (270Mb/s) and HD-SDI (1.5Gb/s) and can be future upgraded to 3Gb/s compatibility.

- Low latency conversion process (as low as 1 field in controlled timing environment)
- Two conversion paths
- Conversion Path 1
- Up-conversion from 2 selectable SDI inputs or a CVBS input
- Up-conversion from 720p or 1080i to 1080p (equal frame-rate)
- Down conversion (including 1080p to SD-SDI)
- Cross conversion 720p to 1080i and vice versa
- Conversion Path 2
- Up-conversion from 2 selectable SDI inputs or a CVBS input
- Up-conversion from 720p or 1080i to 1080p (equal frame-rate)
- Side wing/curtain up-conversion for 4:3 pillarbox on graphics background

- 5 GPI inputs for ARC and Shuffle triggers
- Transparent for 16 channels of embedded audio
- Embedded domain audio shuffling, gain and phase control (GXG - HXH160 only)
- Embedding through synapse bus
- De-embedding to Synapse bus with transparent input to output handling
- Video proc-amp (Y and C control)
- Color corrector (RGB and total gain, RGB and total black)
- Hue control for NTSC inputs
- Compatible with:
 - 270 Mbit/s (SMPTE 259M) 50 and 59.94Hz
 - 1485 Mbit/s (SMPTE 292M) 50 and 59.94Hz
 - 2970 Mbit/s (SMPTE 424M) 50 and 59.94Hz (GXG150/160 only)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

VIDEO FORMAT CONVERSION

Applications

- Truck input up converter/ synchronizer
- Infra structure up/down/ cross conversion
- Up conversion with side-fill/ curtain input

Ordering information

Module:

- GXG150: 3Gb/s, HD, SD-SDI up/down/cross converter with side curtain
- GXG160: 3Gb/s, HD, SD-SDI up/down/cross converter with audio shuffler proc-amp with side curtain
- HXH150: HD, SD-SDI up/ down/cross converter with side curtain*
- HXH160: HD, SD-SDI up/ down/cross converter with audio shuffler proc-amp with side curtain*

Standard I/O:

- BPH17_GXG150: I/O-panel for GXG100 with RJ45 GPI/O
- BPH17_GXG160: I/O-panel for GXG110 with RJ45 GPI/O
- BPH17_HXH150: I/O-panel for HXH100 with RJ45 GPI/O
- BPH17_HXH160: I/O-panel for HXH110 with RJ45 GPI/O

* Upgradeable to 3GB/s

Specifications

Serial video input

Standard	SD,HD and 3Gb/s SDI:
	SMPTE 292M, SMPTE 259M,
	SMPTE424
Number of inputs	2
Connector	BNC
Equalization	Typical maximum equalized
	length of Belden 1694A
	cable: 90m at 2.97Gb/s,
	120m at 1.485Gb/s, and
	250m at 270Mb/s
Return loss	> 15dB up to 1.5GHz
CVBS video input	
Standard	PAL (ITU624-4), NTSC

(SMPTE 170M) Number of inputs 1 Impedance 75 Ohms **Return loss** > 35dB up to 10MHz Frequency < ±0.25dB (100KHz to response 4.2MHz) **Differential gain** < ±0.5% typical Differential < ±0.2° typical phase Noise floor < -57dB RMS (black video, 15KHz to 5MHz) C/L gain < ±0.5% C/L delay < ±9ns Minimum delay 1 field

Serial video output

Number of	
outputs	4
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	135ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.5GHz (typ.)
	> 10dB up to 3GHz (typ.)
Wideband jitter	< 0.2UI

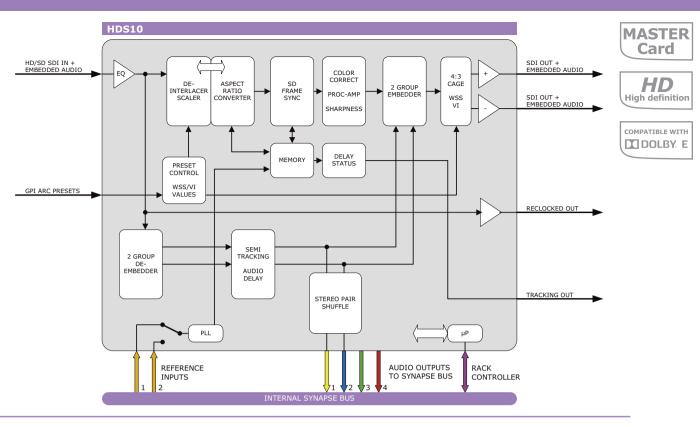
Miscellaneous

Weight	Approx. 450g
Operating	
temperature	0 °C to +40 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<17 Watts

3GB/S, HD, SD INPUT 1	⊕
3GB/S, HD, SD INPUT 2	
3GB/S, HD, SD OUTPUT 1	
3GB/S, HD, SD OUTPUT 2	
GPI INPUT/OUTPUT	
3GB/S, HD, SD OUTPUT 3	
3GB/S, HD, SD OUTPUT 4	
CVBS INPUT	
	150


BPH17

Conversion abilities

See page 259.

video processing

HDS10 Premium quality HD-SDI to SD-SDI down converter with frame-synchronizer

The HDS10 is a premium quality down converter. The optimized scaling and filter algorithms ensure crisp broadcast ready pictures from a native HD source, by use of a 64 tap FIR filters. The HDS10 will allow you to simulcast SD signals from a native HD infrastructure. The embedded audio is carried over to the SD domain; the appropriate aspect ratio can be applied and the correct VI or WSS data can be added. When fed with an SD SDI signal the down converter goes in by-pass mode with a functional frame synchronizer.

- HD-SDI or SD-SDI input (auto selecting)
- 1080i or 720p 50 to 625/50
- 1080i or 720p 59.94 to 525/59.94
- 1080p or 720p 25 to 625/50
- 1080p or 720p 29.97 to 525/59.94
- 1080p or 720p 23.98 to 525/59.94
- Correct color space conversion (709-601)
- Output aspect ratio:
 - Anamorphic
 - Letterbox 16:9
 - Letterbox 14:9
 - Pan & Scan

- Adjustment of H position in pan & scan mode (+/- 64 pixel)
- Low latency mode with 54 SD lines delay
- Adjustable H and V delay with respect to input or reference
- 2 group audio transparency (selectable)
- 2 group de-embedding to Synapse ADD-ON card
- Semi tracking audio delay in 1ms intervals
- Audio delay offset adjustment up to 1000 ms
- Sharpness / enhancement for a perfect crisp SD image
- Coring adjustment
- Proc-amp and color corrector
- 4:3 marker in anamorphic output
- Vi and WSS insertion (including WSS-ext with GPI)
- CC transparent
- One reclocked output (active loop)
- 2 SD-SDI processed outputs
- Preset controlled ARC + WSS/VI inserter
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Complementary cards:

DAC20, DAC24, DAS24, DIO48

(A)

 \mathbf{O}

0

Ð

ନ

BPH03

Applications

- Transmission output down conversion
- Post production down conversion
- OB truck and production down conversion
- Ingest down conversion

Ordering information

Module:

HDS10: High-end HD-SDI to SD-SDI down converter with frame synchronizer

Standard I/O:

- BPH01_HDS10: I/O panel for HDS10
- BPH03_HDS10: I/O panel for HDS10 with GPI inputs on sub-D

Fiber outputs:

BPH01T_FC/PC_HDS10: I/O panel for HDS10 with fiber transmitter on FC/PC

BPH01T_SC_HDS10: I/O panel for HDS10 with fiber transmitter on SC

- BPH03T_FC/PC_HDS10: I/O panel for HDS10 with fiber transmitter on FC/PC
- BPH03T_SC_HDS10: I/O panel for HDS10 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HDS10: I/O panel for HDS10 with fiber receiver on FC/PC
- BPH01R SC HDS10: I/O panel for HDS10 with fiber receiver on SC
- BPH03R_FC/PC_HDS10: I/O panel for HDS10 with fiber receiver on FC/PC
- BPH03R_SC_HDS10: I/O panel for HDS10 with fiber receiver on SC

HD/SD S	SDI INPUT	(OPTIONAL	FIBER	INPUT)
		(,

HD/SD-SDI RECLOCKED OUTPUT

SD-SDI PROCESSED OUTPUT 1

SD-SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)

TRACKING OUTPUT

GPI ARC PRESET CONTROL

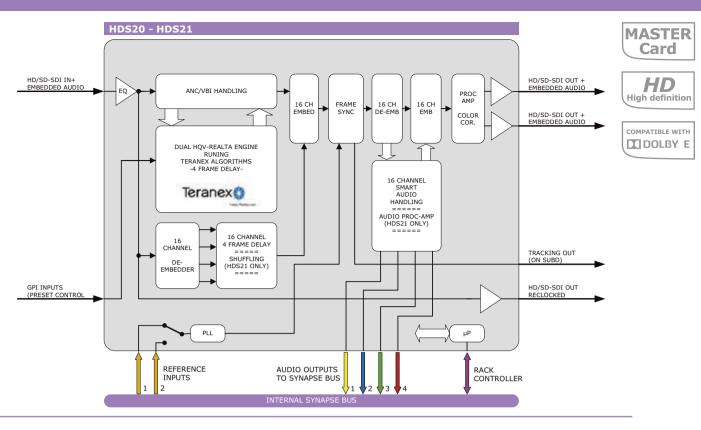
For fiber connectivity see www.axon.tv

Specifications

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
	SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,
	720p/59.94, 720p/50
Equalization	Automatic to 150m @
	1.5Gb/s with Belden 1694A
	or equivalent cable.
Return loss	> 15dB up to 1.5GHz
Return loss	> 150B up to 1.5GHz
SD serial video	o output
SD serial video	o output
SD serial video	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with
SD serial video Standard	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with
SD serial video Standard Number of	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with
SD serial video Standard Number of outputs	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio
SD serial video Standard Number of outputs Signal level	625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio
SD serial video Standard Number of outputs Signal level DC offset	2 800mV nominal
SD serial video Standard Number of outputs Signal level DC offset Rise/fall time	2 60 output 625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio 2 800mV nominal 0V ±0.5V
Return loss SD serial video Standard Number of outputs Signal level DC offset Rise/fall time Overshoot Return loss	2 800mV nominal 0V ±0.5V 800ps nominal
SD serial video Standard Number of outputs Signal level DC offset Rise/fall time Overshoot	2 800mV nominal 0V ±0.5V 800ps nominal < 10% of amplitude

Specifications

Video delay	minimum of 56 SD lines,
	maximum 1F + 56 lines
Audio delay	Delayed and re-embedded in
	time with the output picture
Reference vide	eo input
Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
	Tri-level sync
Number of	
inputs	2 on SFR18, 2on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal


Standard	PAL (ITU624-4), NTSC	
	(SMPTE 170M)	
	Tri-level sync	
Number of		
inputs	2 on SFR18, 2on SFR08,	
	1 on SFR04	
Connector	BNC	
Signal level	1V nominal	
Impedance	75 Ohms	
Return loss	> 25dB to 10MHz	

Miscellaneous

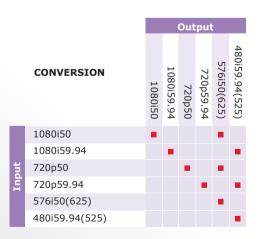
Veight	Approx. 250g
Operating	
emperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxLxD)

Electrical

Voltage	+24V to +30V
Power	<9 Watts

HDS20 - HDS21 High performance HD-SDI to SD-SDI down converter with optional audio shuffler

The HDS20/21 High Down Converter is based on the advanced Teranex algorithms. This high performance dual-slot processing module is the pinnacle of the huge range of SD and HD conversion modules in the Synapse range. It is based on an AXON Synapse that enables full compatibility with the unique ADD-ON functionality of the Synapse system.


The advanced algorithms are running on two HQV Realta DSP's. This gives the board 2 Trillion operations per second processing power, and is the most powerful modular processing card at the time of its introduction.

- HD/SD-SDI input
- 1 reclocked output
- 2 processed outputs
- Frame sync with built-in 16 channel smooth audio handling
- Offset delay -30ms to +1270ms
- Full audio shuffling of all 16 channels (HDS21 only)
- Audio gain and phase control of all 16 channels (HDS21 only)
- GPI preset control for audio shuffling (HDS21 only)
- GPI preset control for the built-in ARC
- Transparent to Closed Captioning

- Testpattern generator
- All audio is present on ADD-ON bus for monitoring
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Conversion abilities

The HDS20 and HDS21 can process the following conversion:

HDS20 - HDS21

Applications

The HDS20 will find its use in MCR, Trucks and post production applications where a dynamic change of different formats is required. The unsurpassed conversion quality will enable the smooth transition with minimal artifacts to and from any HD source with the same frame rate.

- Highest quality downconversion
- Studio output cross-conversion
- Ingest converting with preset audio shuffling (HDS21 only)

Ordering information

Modules

- HDS20: High performance down converter
- HDS21: High performance down converter with full 16 channels of audio swapping

Standard I/O:

- BPH03_HDS20: I/O-panel for HDS20
- BPH03_HDS21: I/O-panel for HDS21

Fiber outputs:

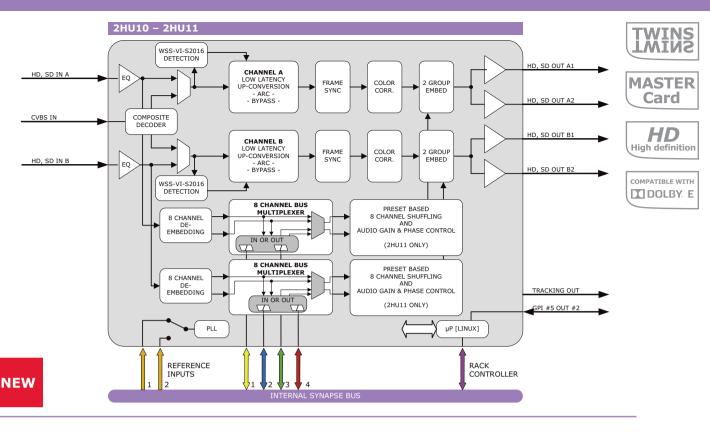
- BPH03T_FC/PC_HDS20: I/O-panel for HDS20 with fiber transmitter on FC/PC
- BPH03T_SC_HDS20:
 I/O-panel for HDS20 with fiber transmitter on SC
- BPH03T_FCPC_HDS21: I/O-panel for HDS21 with fiber transmitter on FC/PC
- BPH03T_SC_HDS21: I/O-panel for HDS21 with fiber transmitter on SC

Fiber inputs:

 BPH03R_FC/PC_HDS20: I/O-panel for HDS20 with fiber receiver on FC/PC

- BPH03R_SC_HDS20:
 I/O-panel for HDS20 with fiber receiver on SC
- BPH03R_FC/PC_HDS21: I/O-panel for HDS21 with fiber receiver on FC/PC
- BPH03R_SC_HDS21: I/O-panel for HDS21 with fiber receiver on SC

HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)		(
HD/SD-SDI RECLOCKED OUTPUT	\bigcirc	
HD/SD-SDI PROCESSED OUTPUT 1	\bigcirc	
HD/SD-SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	
	\odot	
	\odot	
GPI INPUT		
	\bigcirc	
The HDS20/21 is a dual slot card taking up 2 card positions in a frame. For fiber connectivity see www.axon.ty	BPH03 +	BPL00


Specifications

For fiber connectivity see www.axon.tv

HD/SD serial	video input	Reference vie	deo input
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4), NTSC
	259M-C (270Mb/s) with		(SMPTE 170M)
	SMPTE 272M embedded audio	Number of inpu	ts 2 on SFR18, 2 on SFR08,
	SMPTE 292M (1.5Gb/s),		1 on SFR04
	SMPTE 260M, SMPTE 274M,	Connector	BNC
	SMPTE 296M, SMPTE 349M	Signal level	1V nominal
	1080i/59.94, 1080i/50,	Impedance	High impedance, with loop
	720p/59.94, 720p/50		for termination
Number of inpu	ts 1	Return loss	> 25dB to 10MHz
Equalization	Automatic to 100m @		
	1.5Gb/s with Belden 1694A	Miscellaneou	S
	or equivalent cable.	Weight	Approx. 500g
Return loss	> 15dB up to 1.5GHz	Operating	
		temperature	0 °C to +50 °C
SD serial vide	eo output	Dimensions	137 x 296 x 20 mm (HxWxD)
Standard	625/50 or 525/59.94 SMPTE		
	259M-C (270Mb/s) with	Electrical	
	SMPTE 272M embedded audio	Voltage	+24V to +30V
Number of		Power	<32 Watts (dual slot)
outputs	3 (1 reclocked and 2 processed)		
Signal level	800mV nominal		
DC offset	0V ±0.5V		
Rise and			
fall time	200ps nominal for HD,		
	750ps nominal for SD		
Overshoot	< 10% of amplitude		

> 15dB up to 1.0Gb/s, >
10dB up to 1.5Gb/s

Return loss

2HU10 - 2HU11 Dual channel HD up-converter with color corrector

The 2HU10/11 is a dual channel high-quality up converter. The optimized scaling and filter algorithms ensure crisp broadcast ready pictures from a native SD source, by use of a 64 tap FIR filters. The 2HU10/11 allows you to simulcast 2 HD signals from 2 native SD or 1 CVBS and a SD infrastructure. The embedded audio is carried over to the HD domain. The appropriate aspect ratio can be applied by control of VI, WSS and GPI inputs by use of 16 presets that can store the aspect ratio conversions. The 2HU11 adds a audio shuffler proc-amp to this all.

- 2x HD or SD input (auto by-pass mode with no processing)
- 1x CVBS input
- Full functioning frame synchronizer in all modes
- 625/50 to 1080i/50 or 720p/50
- 525/59.94 to 1080i/59.94 or 720p/59.94
- 625/50 to 1080p/25 or 720p/25
- 525/59.94 to 1080p/29.97 or 720p 29.97
- PAL or NTSC to SD/HD SDI converter
- Single field (low latency) and 3 field de-interlacing
- Sharpness control for crisp image quality
- Adjustable H and V delay with respect to input or reference
- Color corrector
- Aspect ratio control:
 - Embedded WSS
- Embedded WSS-ext
 GPI
- Embedded VI

- 16 presets for aspect ratio conversion
 Anamorphic (16F16 to 16F16)
 - Pillarbox (12F12 to 12P16)
 - Pillarbox 14:9 (12F12 to 14P16)
 - Inverse pan-scan (12F12 to 16F16)
- Variable H + V setting
- V position control between -128 and + 127 lines (for inverse pan-scan/zoom mode)
- Jump to preset or hold at loss of WSS or VI control
- 2 group audio transparency (selectable)
- 2 group de-embedding to Synapse ADD-ON card or embedding from the Synapse bus
- Smooth audio handling
- Audio delay offset adjustment up to 1000 ms
- Audio shuffler proc-amp (2HU11 only)
- Correct color space conversion(601-709)
- VITC transparency with selectable line selection and duplication
- CC transparent
- 2 HD-SDI processed outputs
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Complementary cards:

DAC20, DAC24, DAS24, DIO48, ADC20, ADC24, DIO24

VIDEO FORMAT CONVERSION

Applications

- High quality low latency up-conversion (with zero motion artifacts) for 2 channels
- Free running fill-in camera positions up-conversion and synchronization

Ordering information

Module:

- 2HU10: Dual channel HD up-converter with color corrector
- 2HU11: Dual channel HD up-converter with color corrector and audio shuffler proc-amp

Standard I/O:

- BPH17_2HU10: I/O panel for 2HU10
- BPH17_2HU11: I/O panel for 2HU10

Serial vide	eo input
Standard	SD,I

SD,HD SDI: SMPTE 292M, SMPTE 259M. Number of inputs 2 BNC Connector Equalization Typical maximum equalized length of Belden 1694A cable: 90m at 2.97Gb/s, 120m at 1.485Gb/s, and 250m at 270Mb/s **Return loss** > 15dB up to 1.5GHz

CVBS video input

CVBS video input		
Standard	PAL (ITU624-4), NTSC	
	(SMPTE 170M)	
Number of inputs	1	
Impedance	75 Ohms	
Return loss	> 35dB up to 10MHz	
Frequency		
response	< ±0.25dB (100KHz to	
	4.2MHz)	
Differential gain	$< \pm 0.5\%$ typical	
Differential		
phase	< ±0.2° typical	
Noise floor	< -57dB RMS (black video,	
	15KHz to 5MHz)	
C/L gain	< ±0.5%	
C/L delay	< ±9ns	
Minimum delay	3 lines	

Serial video output

Number of	
outputs	4
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	135ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.5GHz (typ)
	> 10dB up to 3GHz (typ)
Wideband jitter	< 0.2UI

HD/SD SDI INPUT A	0
HD/SD-SDI INPUT B	0
HD/SD-SDI PROCESSED OUTPUT A1	0
HD/SD-SDI PROCESSED OUTPUT A2	\odot
GPI INPUT/OUTPUT	
HD/SD-SDI PROCESSED OUTPUT B1	0
HD/SD-SDI PROCESSED OUTPUT B2	0
	0
CVBS INPUT	\bigcirc
	\bigcirc

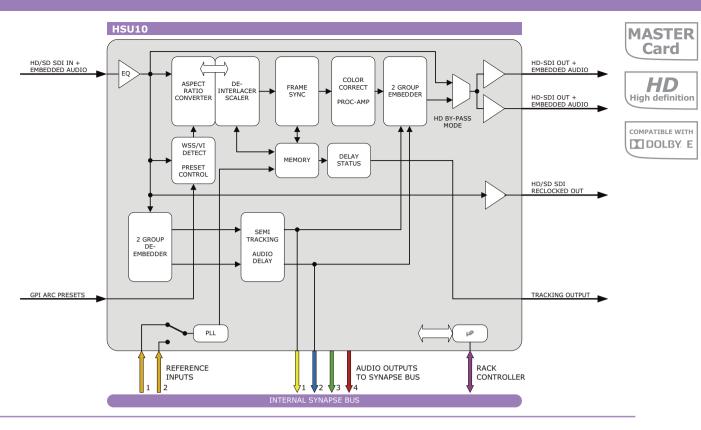
For fiber connectivity see www.axon.tv

Miscellaneous

Approx. 450g
0 °C to +40 °C
137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<17 Watts


Conversion abilities

The 2HU10/11 can handle the following conversions:

		Output					
	CONVERSION	1080i50	1080i59.94	720p50	720p59.94	576i50(625)	480i59.94(525)
2	1080i50						
o	1080i59.94						
Ŧ	720p50						
npu	720p59.94						
SDI Input 1 or 2	576i50(625)						
ร	480i59.94(525)						
CVBS	576i50(PAL)						
S	480i59.94(NTSC)						

video processing

BPH17

HSU10 HD up-converter with color corrector

The HSU10 is high-quality up converter. The optimized scaling and filter algorithms ensure crisp broadcast ready pictures from a native SD source, by use of a 64 tap FIR filters. The HSU10 will allow you to simulcast HD signals from a native SD infrastructure. The embedded audio is carried over to the HD domain. The appropriate aspect ratio can be applied by control of VI, WSS and GPI inputs by use of 16 presets that can store the aspect ratio conversions.

- HD-SDI or SD-SDI input (auto by-pass mode with no processing)
- 625/50 to 1080i/50 or 720p/50
- 525/59.94 to 1080i/59.94 or 720p/59.94
- 625/50 to 1080p/25 or 720p/25
- 525/59.94 to 1080p/29.97 or 720p 29.97
- Single field (low latency) and 3 field de-interlacing
- Sharpness control for crisp image quality
- Low latency mode with 54 SD lines delay
- Adjustable H and V delay with respect to input or reference
- Color corrector
- Aspect ratio control:
 - Embedded WSS
 - Embedded WSS-ext
 - Embedded VI
 - GPI (BPH03)

- 16 presets for aspect ratio conversion
 - Anamorphic (16F16 to 16F16)
 - Pillarbox (12F12 to 12P16)
 - Pillarbox 14:9 (12F12 to 14P16)
 - Inverse pan-scan (12F12 to 16F16)
- V position control between -128 and + 127 lines (for inverse pan-scan/zoom mode)
- Jump to preset or hold at loss of WSS or VI control
- 2 group audio transparency (selectable)
- 2 group de-embedding to Synapse ADD-ON card
- Semi tracking audio delay in 1ms intervals
- Audio delay offset adjustment up to 1000 ms
- Correct color space conversion(601-709)
- VITC transparency with selectable line selection and duplication
- CC transparent
- One reclocked output (active loop)
- 2 HD-SDI processed outputs (active loop in HD by-pass mode)
- Built-in ARC for 4:3 and 14:9 pillar box and inverse pan scan output formats
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Complementary cards:

DAC20, DAC24, DAS24, DIO48

268

()

Ô

0

0

O

٩

6

BPH03

Applications

- High quality low latency up-conversion (with zero motion artifacts)
- Free running fill-in camera positions up-conversion and synchronization

Ordering information

Module:

HSU10: HD up-converter with color corrector

Standard I/O:

BPH03_HSU10: I/O panel for HSU10

Fiber outputs:

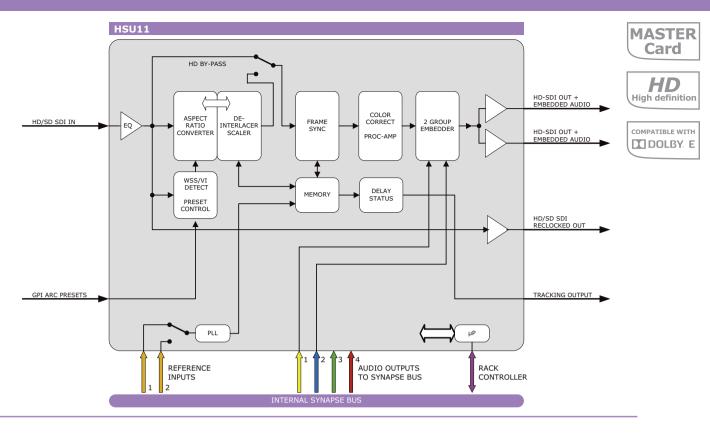
- BPH03T_FC/PC_HSU10: I/O panel for HSU10 with fiber transmitter on FC/PC
- BPH03T_SC_HSU10: I/O panel for HSU10 with fiber transmitter on SC

Fiber inputs:

- BPH03R_FC/PC_HSU10: I/O panel for HSU10 with fiber receiver on FC/PC
- BPH03R_SC_HaU10: I/O panel for HSU10 with fiber receiver on SC

HD/SD SDI INPUT (OPTIONAL FIBER INPUT)
HD/SD-SDI RECLOCKED OUTPUT
HD-SDI PROCESSED OUTPUT 1
HD-SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)
TRACKING OUTPUT
GPI ARC PRESET CONTROL

For fiber connectivity see www.axon.tv


Specifications

eo input
PAL (ITU
(SMPTE
2 on SFR
1 on SFR
BNC
1V nomii
High imp
for termi
> 25dB t
5
Approx.
0 °C to +
137 x 29
+24V to
<9 Watts

Reference video input			
Standard	PAL (ITU624-4), NTSC		
	(SMPTE 170M)		
Number of			
inputs	2 on SFR18, 2 on SFR08,		
	1 on SFR04		
Connector	BNC		
Signal level	1V nominal		
Impedance	High impedance, with loop		
	for termination		
Return loss	> 25dB to 10MHz		

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Voltage	+24V to +30V
Power	<9 Watts

HSU11 HD up-converter with color corrector and 2 group embedder

The HSU11 is high-quality up converter. The optimized scaling and filter algorithms ensure crisp broadcast ready pictures from a native SD source, by use of a 64 tap FIR filters. The HSU11 will allow you to simulcast HD signals from a native SD infrastructure. The embedded audio is carried over to the HD domain. The appropriate aspect ratio can be applied by control of VI, WSS and GPI inputs by use of 16 presets that can store the aspect ratio conversions. Additional, the HSU11 contains a 2 group embedder which enables you to embed audio from the Synapse bus.

- HD-SDI or SD-SDI input (auto by-pass mode with no processing)
- 625/50 to 1080i/50 or 720p/50
- 525/59.94 to 1080i/59.94 or 720p/59.94
- 625/50 to 1080p/25 or 720p/25
- 525/59.94 to 1080p/29.97 or 720p 29.97
- Single field (low latency) and 3 field de-interlacing
- Sharpness control for crisp image quality
- Low latency mode with 54 SD lines delay
- Adjustable H and V delay with respect to input or reference
- Color corrector
- Aspect ratio control:
 - Embedded WSS
 - Embedded WSS-ext
 - Embedded VI
 - GPI (BPH03)

- 16 presets for aspect ratio conversion
 - Anamorphic (16F16 to 16F16)
 - Pillarbox (12F12 to 12P16)
 - Pillarbox 14:9 (12F12 to 14P16)
 - Inverse pan-scan (12F12 to 16F16)
- V position control between -128 and + 127 lines (for inverse pan-scan/zoom mode)
- Jump to preset or hold at loss of WSS or VI control
- 2 group embedding from Synapse bus
- Automatic Correct color space conversion(601-709)
- VITC transparency with selectable line selection and duplication
- One reclocked output (active loop)
- 2 HD-SDI processed outputs (active loop in HD by-pass mode)
- Built-in ARC for 4:3 and 14:9 pillar box and inverse pan scan output formats (SD only)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Complementary cards:

ADC20, ADC24, DIO24, DIO48

4

Ó

 \bigcirc

Ô

0

Ô

 \odot

BPH03

Applications

- High quality low latency up-conversion (with zero motion artifacts)
- Free running fill-in camera positions up-conversion and synchronization

Ordering information

Module:

 HSU11: HD up-converter with color corrector and 2 group embedder

Standard I/O:

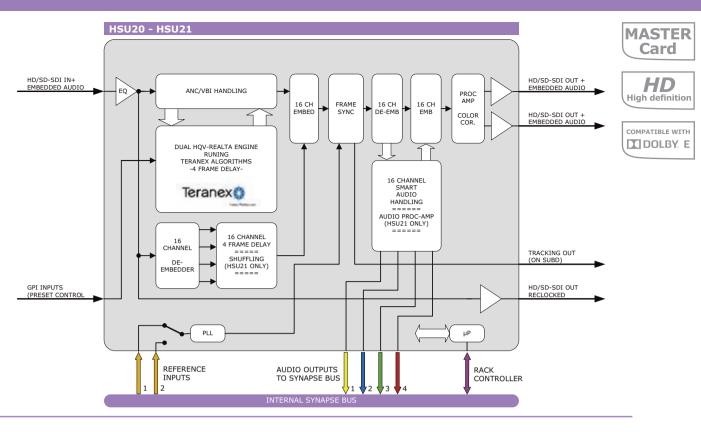
BPH03_HSU11: I/O-panel for HSU11

Fiber outputs:

- BPH03T_FC/PC_HSU11: I/O-panel for HSU11 with fiber transmitter on FC/PC
- BPH03T_SC_HSU11: I/O-panel for HSU11 with fiber transmitter on SC

Fiber inputs:

- BPH03R_FC/PC_HSU11: I/O-panel for HSU11 with fiber receiver on FC/PC
- BPH03R_SC_HSU11:
 I/O-panel for HSU11 with fiber receiver on SC


HD/SD SDI INPUT (OPTIONAL FIBER INPUT)
HD/SD-SDI RECLOCKED OUTPUT
HD-SDI PROCESSED OUTPUT 1
HD-SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)
TRACKING OUTPUT
GPI ARC PRESET CONTROL

For fiber connectivity see www.axon.tv

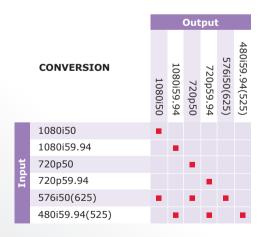
Specifications

Wideband jitter < 0.2UI

HD/SD serial video input **Reference video input** Standard 625/50 or 525/59.94 SMPTE Standard PAL (ITU624-4), NTSC 259M-C (270Mb/s) with (SMPTE 170M) Number of inputs 2 on SFR18, 2 on SFR08, SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), 1 on SFR04 SMPTE 260M, SMPTE 274M, Connector BNC SMPTE 296M, SMPTE 349M Signal level 1V nominal 1080i/59.94, 1080i/50, Impedance High impedance, with loop for 720p/59.94, 720p/50 termination Number of inputs 1 Return loss > 25dB to 10MHz Equalization Automatic to 150m @ Miscellaneous 1.5Gb/s with Belden 1694A Weight Approx. 250g or equivalent cable. **Return loss** > 15dB up to 1.5GHz Operating temperature 0 °C to +50 °C HD serial video output Dimensions 137 x 296 x 20 mm (HxWxD) Standard SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, Electrical SMPTE 296M, SMPTE 349M Voltage +24V to +30V 1080i/59.94, 1080i/50, Power <10 Watts 720p/59.94, 720p/50 Number of outputs 3 (1 reclocked and 2 processed) Signal level 800mV nominal DC offset 0V ±0.5V Rise and fall time 200ps nominal for HD Overshoot < 10% of amplitude **Return loss** > 15dB up to 1.0Gb/s, > 10dB up to 1.5Gb/s

HSU20 - HSU21 High performance HD-SDI upconverter with optional audio shuffler

The HSU20/21 is a Linear SD/HD Up converter based on the advanced Teranex® algorithms. This high performance dual slot processing module is the pinnacle of the huge range of SD and HD conversion modules in the Synapse range.


The advanced algorithms are running on two HQV Realta chips supplied by Silicon Optix. This gives the board 2 Trillion operations per second processing power, and makes it the most powerful modular processing card at the time of its introduction.

- HD/SD-SDI input
- 1 reclocked output
- 2 processed outputs
- Frame sync with built-in 16 channel tracking audio delay
- Audio offset delay -60ms to +1240ms
- Full audio shuffling of all 16 channels (HSU21 only)
- Audio gain and phase control of all 16 channels
- GPI preset control for audio shuffling (HSU21 only)
- All audio is present on ADD-ON bus for monitoring

- Transparent to Closed Captioning
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Conversion abilities

The HSU20 and HSU21 can process the following conversion:

Applications

The HSU20/21 is the choice for all HD format UP conversions

- Ultra High quality Up conversion
- Conversion with preset audio shuffling (HSU21 only)
- Mobile truck applications
- DVD mastering and authoring

Ordering information

Module:

- HSU20: High performance HD up converter
- HSU21: High performance HD up converter with full 16 channels of audio swapping

Standard I/O:

- BPH03_HSU20: I/O-panel for HSU20
- BPH03_HSU21: I/O-panel for HSU21

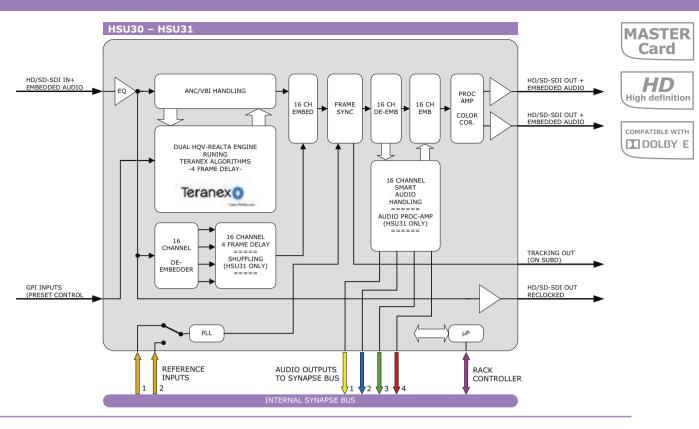
Fiber outputs:

- BPH03T_FC/PC_HSU20: I/O-panel for HSU20 with fiber transmitter on FC/PC
- BPH03T_SC_HSU20: I/O-panel for HSU20 with fiber transmitter on SC
- BPH03T_FC/PC_HSU21: I/O-panel for HSU21 with fiber transmitter on FC/PC
- BPH03T_SC_HSU21: I/O-panel for HSU21 with fiber transmitter on SC

Fiber inputs:

- BPH03R_FC/PC_HSU20: I/O-panel for HSU20 with fiber receiver on FC/PC
- BPH03R_SC_HSU20: I/O-panel for HSU20 with fiber receiver on SC
- BPH03R_FC/PC_HSU21: I/O-panel for HSU21 with fiber receiver on FC/PC
- BPH03R_SC_HSU21: I/O-panel for HSU21 with fiber receiver on SC

	$\Theta \qquad \Theta$
HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)	
HD/SD-SDI RECLOCKED OUTPUT	\bigcirc
HD SDI PROCESSED OUTPUT 1	
HD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	
GPI INPUT	
The HSU20/21 is a dual slot card taking up 2 card positions in a frame. For fiber connectivity see www.axon.ty	BPH03 + BPL00


Specifications

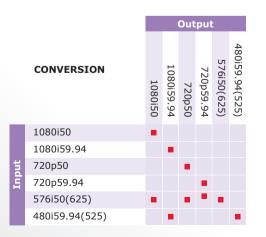
HD/SD serial	video input	Reference vio	leo
Standard	625/50 or 525/59.94 SMPTE	Standard	PA
	259M-C (270Mb/s) with		(5
	SMPTE 272M embedded audio	Number of	
	SMPTE 292M (1.5Gb/s),	inputs	2
	SMPTE 260M, SMPTE 274M,		1
	SMPTE 296M, SMPTE 349M	Connector	BI
	1080i/59.94, 1080i/50,	Signal level	1
	720p/59.94, 720p/50	Impedance	Hi
Equalization	Automatic to 100m @		fo
	1.5Gb/s with Belden 1694A	Return loss	>
	or equivalent cable.		
Return loss	> 15dB up to 1.5GHz	Miscellaneou	s
		Weight	A
HD/SD serial	video output	Operating	
Standard	SMPTE 292M (1.5Gb/s),	temperature	0
	SMPTE 260M, SMPTE 274M,	Dimensions	13
	SMPTE 296M, SMPTE 349M		(۲
	1080i/59.94, 1080i/50,		
	720p/59.94, 720p/50	Electrical	
Signal level	800mV nominal	Voltage	+
DC offset	0V ±0.5V	Power	<
Rise and			
fall time	200ps nominal for HD, 750ps		
	nominal for SD		
Overshoot	< 10% of amplitude		
Return loss	> 15dB up to 1.0Gb/s,		
	> 10dB up to 1.5Gb/s		
Wideband jitter	< 0.2UI		

input

Reference that	lo input
Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of	
inputs	2 on SFR18, 2on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz
Miscellaneous	
Weight	Approx. 500g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 40 mm
	(HxWxD) = DUAL SLOT
Electrical	
Voltage	+24V to +30V
Voltage Power	+24V to +30V <29 Watts (dual slot)

HSU30 - HSU31 High performance HD-SDI upconverter with enchanced noise reduction with optional audio shuffler

The HSU30/31 High-end up-converter is similar to the HSU20, but with enhanced noise reduction algorithm that can be applied to the input signal for smooth conversion quality where the source is less than ideal. The unit runs the advanced Teranex algorithms. It is based on an AXON Synapse card that enables compatibility with the unique ADD-ON functionality of the Synapse system.


The advanced algorithms are running on two HQV Realta DSP's. This gives the board 2 Trillion operations per second processing power, and is the most powerful modular processing card at the time of its introduction.

- Enhanced noise reduction
- HD/SD-SDI input
- 1 reclocked output
- 2 processed outputs
- Frame sync with built-in 16 channel smooth audio handling
- Audio offset delay -30ms to +1270ms
- Full audio shuffling of all 16 channels (HSU31 only)
- Audio gain and phase control of all 16 channels (HSU31 only)
- GPI preset control for audio shuffling (HSU31 only)
- GPI preset control for the built-in ARC

- All audio is present on ADD-ON bus for monitoring
- Transparent to Closed Captioning
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Conversion abilities

The HXH30 and HXH31 can process the following conversion:

VIDEO FORMAT CONVERSION

video processing

a 10

Applications

The HSU30 and HSU31 are engineered for applications in MCR and OB trucks where analog sources or sources with MPEG artifacts are used. Also in transmission applications where a station output needs to convert every possible (legacy) source into the HD transmission chain. The HSU31 enables 16 channels of audio swapping when the SD and HD embedded audio designation is different.

- Highest quality up-conversion (for noisy signals)
- Archive material restoration for HD replay purposes
- Studio output up-conversion Ingest up-converting with preset audio shuffling (HSU31 only)

Orderina information

Module:

- HSU30: High performance upconverter with enhanced noise reduction
- HSU31: High performance upconverter with enhanced noise reduction, with full 16 channels of audio swapping

Standard I/O:

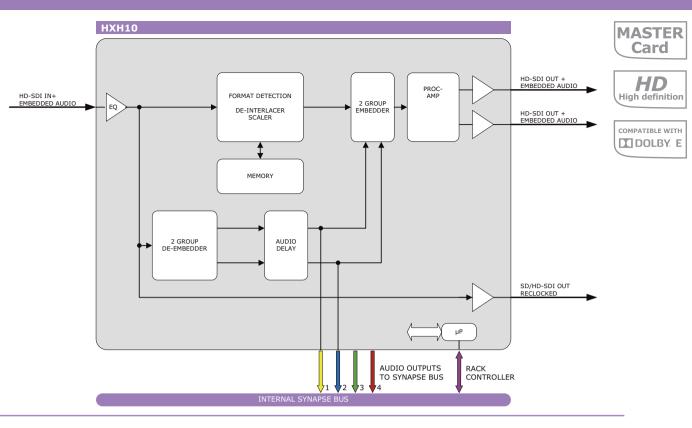
- BPH03 HSU30: I/O-panel for HSU20
- BPH03_HSU31: I/O-panel for HSU31

Fiber outputs:

- BPH03T_FC/PC_HSU30: I/O-panel for HSU30 with fiber transmitter on FC/PC
- BPH03T_SC_HSU30: I/O-panel for HSU30 with fiber transmitter on SC
- BPH03T_FC/PC_HSU31: I/O-panel for HSU31 with fiber transmitter on FC/PC
- BPH03T_SC_HSU31: I/O-panel for HSU31 with fiber transmitter on SC

Fiber inputs:

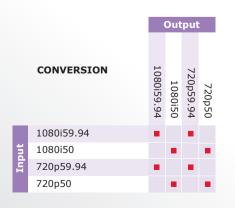
- BPH03R_FC/PC_HSU30: I/O-panel for HSU30 with fiber receiver on FC/PC
- BPH03R_SC_HSU30: I/O-panel for HSU30 with fiber receiver on SC
- BPH03R_FC/PC_HSU31: I/O-panel for HSU31 with fiber receiver on FC/PC
- BPH03R_SC_HSU31: I/O-panel for HSU31 with fiber receiver on SC


	- €>	•
HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	
HD/SD-SDI RECLOCKED OUTPUT	\bigcirc	
HD SDI PROCESSED OUTPUT 1	\bigcirc	
HD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	
	®	
GPI INPUT		G
The HSU30/31 is a dual slot card taking up 2 card positions in a frame. For fiber connectivity see www.axon.ty	BPH03	+ BPL00

Specifications

HD/SD serial	video input	Reference vid	eo input
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4), NTSC
	259M-C (270Mb/s) with		(SMPTE 170M)
	SMPTE 272M embedded audio	Number of	
	SMPTE 292M (1.5Gb/s),	inputs	2 on SFR18, 2on SFR08, 1
	SMPTE 260M, SMPTE 274M,		on SFR04
	SMPTE 296M, SMPTE 349M	Connector	BNC
	1080i/59.94, 1080i/50,	Signal level	1V nominal
	720p/59.94, 720p/50	Impedance	High impedance, with loop
Equalization	Automatic to 100m @		for termination
	1.5Gb/s with Belden 1694A	Return loss	> 25dB to 10MHz
	or equivalent cable.		
Return loss	> 15dB up to 1.5GHz	Miscellaneous	;
		Weight	Approx. 500g
HD/SD serial v	video output	Operating	
Standard	SMPTE 292M (1.5Gb/s),	temperature	0 °C to +50 °C
	SMPTE 260M, SMPTE 274M,	Dimensions	137 x 296 x 40 mm
	SMPTE 296M, SMPTE 349M		(HxWxD) = DUAL SLOT
	1080i/59.94, 1080i/50,		
	720p/59.94, 720p/50	Electrical	
Signal level	800mV nominal	Voltage	+24V to +30V
DC offset	0V ±0.5V	Power	<29 Watts (dual slot)
Rise and			
fall time	200ps nominal for HD, 750ps		
	nominal for SD		
Overshoot	< 10% of amplitude		
Return loss	> 15dB up to 1.0Gb/s, >		
	10dB up to 1.5Gb/s		
Wideband jitter	< 0.2UI		

HSU30 - HSU31



HXH10 HD-SDI cross converter between 1080i and 720p

The HXH10 is a HD-SDI cross converter. This module can output either 1080i 50/59.94 and have 720p or 1080i (with the same frequency as selected output frequency) on its input, and 720p to 1080i. This means that in an HD infrastructure with dynamically changing formats, 720p to 1080i can be used. If the output format is applied to its input the unit will switch into a transparent mode.

- 1080i to 720p conversion in either 50Hz or 59.94Hz
- 720p to 1080i conversion in either 50Hz or 59.94Hz
- Selectable color conversion 601 to 709 or vice versa
- Color corrector & Proc-amp
- Total Gain, C Gain, R,G,B Gain Black R,G,B Gain
- High quality de-interlacing (1080i to 720p) and scaling algorithms
- 2 Group audio transparency with selectable groups
- Adjustable audio delay up to 42ms
- Delay status
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

(A)

 \bigcirc

Applications

- Generic equal frame cross conversion, that provides a fixed output format independent of the HD input format
- Pre MPEG4 processing with zero motion artifacts de-interlacing

Ordering information

Module:

 HXH10: HD-SDI cross converter 1080i > 720p and vice versa

Standard I/O:

 BPH01_HXH10:
 BPH01_HXH10: I/O panel for HXH10

Fiber outputs:

- BPH01T_FC/PC_HXH10:
 I/O panel for HXH10 with
 fiber transmitter on FC/PC
- BPH01T_SC_HXH10:
 I/O panel for HXH10 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HXH10:
 I/O panel for HXH10 with
 fiber receiver on FC/PC
- BPH01R_SC_HXH10: I/O panel for HXH10 with fiber receiver on SC

	HD SDI	INPUT	(OPTIONAL	FIBER	INPUT
--	--------	-------	-----------	-------	-------

HD SDI RECLOCKED INPUT

HD SDI PROCESSED OUTPUT 1

HD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)

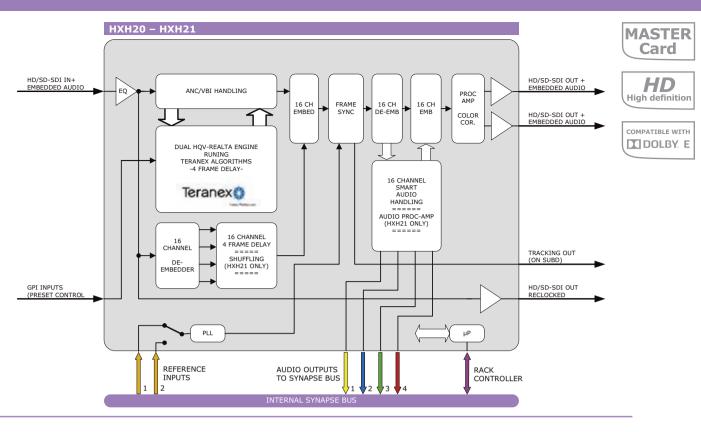
For fiber connectivity see www.axon.tv

Specifications

HD/SD serial video input		
Standard	SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,	
	SMPTE 296M, SMPTE 349M	
	1080i/59.94, 1080i/50,	
	720p/59.94, 720p/50	
Equalization	Automatic to 150m @	
	1.5Gb/s with Belden 1694A	
	or equivalent cable.	
Return loss	> 15dB up to 1.5GHz	
	1.5Gb/s with Belden 1694A or equivalent cable.	

HD serial video output

Standard	SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,
	720p/59.94, 720p/50
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise and	
fall time	200ps nominal for HD, 750ps
	nominal for SD
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s
Wideband jitter	< 0.2UI


Miscellaneous	
Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

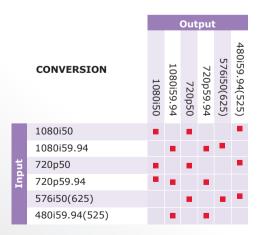
Voltage	+24V to +30V
Power	9 Watts

BPH01

 \bigcirc

HXH20 - HXH21 High performance up, down and cross converter with optional audio shuffler

The HXH20 High-end Up, Down and Cross Converter is based on the advanced Teranex® algorithms. This high performance dual-slot processing module is the pinnacle of the huge range of SD and HD conversion modules in the Synapse range. It is based on an Axon Synapse that enables full compatibility with the unique ADD-ON functionality of the Synapse system.


The advanced algorithms are running on two HQV Realta DSP's. This gives the board 2 Trillion operations per second processing power, and is the most powerful modular processing card at the time of its introduction.

- HD/SD-SDI input
- 1 reclocked output
- 2 processed outputs
- Frame sync with built-in 16 channel smooth audio handling
- Offset delay -30ms to +1270ms
- Full audio shuffling of all 16 channels (HXH21 only)
- Audio gain and phase control of all 16 channels
- GPI preset control for audio shuffling (HXH21 only)
- GPI preset control for the built-in ARC

- All audio is present on ADD-ON bus for monitoring
- Transparent to Closed Captioning
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Conversion abilities

The HXH20 and HXH21 can process the following conversion:

Applications

The HXH20 will find its use in MCR, Trucks and post production applications where a dynamic change of different formats is required. The unsurpassed conversion quality will enable the smooth transition with minimal artifacts to and from any HD source with the same frame rate.

- Highest quality up/down/ cross-conversion
- Studio output crossconversion
- Ingest cross-converting with preset audio shuffling (HXH21 only)

Ordering information

Module:

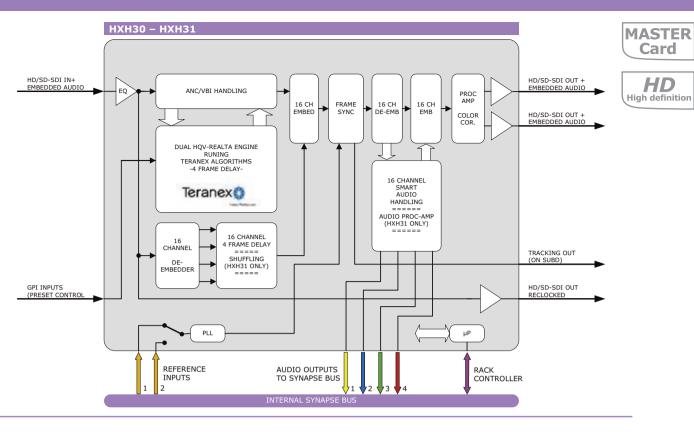
- **HXH20:** High performance Up, Down and Cross converter
- **HXH21:** High performance up converter with full 16 channels of audio swapping

Standard I/O:

- BPH03_HXH20: I/O-panel for HXH20
- BPH03_HXH21: I/O-panel for HXH20

Fiber outputs:

- BPH03T_FC/PC_HXH20: I/O-panel for HXH20 with fiber transmitter on FC/PC
- BPH03T_SC_HXH20: I/O-panel for HXH20 with fiber transmitter on SC
- BPH03T_FCPC_HXH21: I/O-panel for HXH21 with fiber transmitter on FC/PC
- BPH03T_SC_HXH21: I/O-panel for HXH21 with fiber transmitter on SC


Fiber inputs:

- BPH03R_FC/PC_HXH20: I/O-panel for HXH20 with fiber receiver on FC/PC
- BPH03R_SC_HXH20: I/O-panel for HXH20 with fiber receiver on SC
- BPH03R_FC/PC_HXH21: I/O-panel for HXH21 with fiber receiver on FC/PC
- BPH03R_SC_HXH21: I/O-panel for HXH21 with fiber receiver on SC

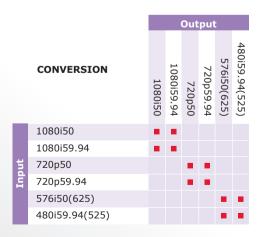
HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)	
HD/SD-SDI RECLOCKED OUTPUT	
HD/SD-SDI PROCESSED OUTPUT 1	
HD/SD-SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	
GPI INPUT	
	$\bigcirc \qquad \bigcirc$
The HXH20/21 is a dual slot card taking up 2 card positions in a frame. For fiber connectivity see www.axon.ty	BPH03 + BPL00

Specifications

HD/SD seria	video input	Overshoot	< 10% of amplitude
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 15dB up to 1.0Gb/s, >
	259M-C (270Mb/s) with		10dB up to 1.5Gb/s
	SMPTE 272M embedded audio	Wideband jitter	< 0.2UI
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	Reference vide	eo input
	SMPTE 296M, SMPTE 349M	Standard	PAL (ITU624-4), NTSC
	1080i/59.94, 1080i/50,		(SMPTE 170M)
	720p/59.94, 720p/50	Number of	
Equalization	Automatic to 100m @	inputs	2 on SFR18, 2 on SFR08, 1
	1.5Gb/s with Belden 1694A		on SFR04
	or equivalent cable.	Connector	BNC
Return loss	> 15dB up to 1.5GHz	Signal level	1V nominal
		Impedance	High impedance, with loop
HD serial vid	eo output		for termination
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 25dB to 10MHz
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio	Miscellaneous	
	SMPTE 292M (1.5Gb/s),	Weight	Approx. 500g
	SMPTE 260M, SMPTE 274M,	Operating	
	SMPTE 296M, SMPTE 349M	temperature	0 °C to +50 °C
	1080i/59.94, 1080i/50,	Dimensions	137 x 296 x 40 mm
	1080i/59.94, 1080i/50, 720p/59.94, 720p/50	Dimensions	137 x 296 x 40 mm (HxWxD) = DUAL SLOT
Signal level		Dimensions	
Signal level DC offset	720p/59.94, 720p/50	Dimensions Electrical	
	720p/59.94, 720p/50 800mV nominal		
DC offset	720p/59.94, 720p/50 800mV nominal	Electrical	(HxWxD) = DUAL SLOT

HXH30 - HXH31 High performance HD standards converter with optional audio shuffler

The HXH30/31 Linear HD Standards Converter is based on the advanced Teranex® algorithms. This high performance dual slot processing module is the pinnacle of the huge range of SD and HD conversion modules in the Synapse range. HD and SD standard conversion is a process of converting (mostly US-based) 59.94 frames/fields per second video stream is converted to 50 frames/ fields per second and vice versa for 1080i, 720p, 576i, 480i.


The advanced algorithms are running on two HQV Realta chips supplied by Silicon Optix. This gives the board 2 Trillion operations per second processing power, and makes it the most powerful modular processing card at the time of its introduction.

- SD/HD-SDI input
- 1 reclocked output
- 2 processed outputs
- Frame sync with built-in 16 channel tracking audio delay
- Audio offset delay -60ms to +1240ms
- Full audio shuffling of all 16 channels (HXH31 only)
- Audio gain and phase control of all 16 channels
- GPI preset control for audio shuffling (HXH31 only)

- All audio is present on ADD-ON bus for monitoring
- Transparent to Closed Captioning
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Conversion abilities

The HXH30 and HXH31 can process the following conversion:

1.0

Applications

The HXH30 is the choice for all HD standards conversion applications where a modular implementation with redundant power supplies, SNMP and hot swap ability is required.

- Highest quality HD standards-conversion
- Ingest standards-converting with preset audio shuffling (HXH31 only)
- Mobile truck applications
- DVD mastering and authoring

Ordering information

Module:

- HXH30: High performance
 HD standards converter
- HXH31: High performance up converter with full 16 channels of audio swapping

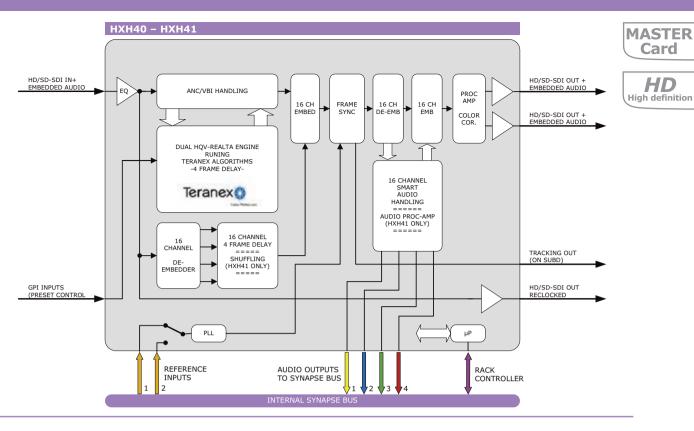
Standard I/O:

- BPH03_HXH30: I/O-panel for HSU20
- BPH03_HXH31: I/O-panel for HXH31

Fiber outputs:

- BPH03T_FC/PC_HXH30: I/O-panel for HXH30 with fiber transmitter on FC/PC
- BPH03T_SC_HXH30:
 I/O-panel for HXH30 with fiber transmitter on SC
- BPH03T_FC/PC_HXH31: I/O-panel for HXH31 with fiber transmitter on FC/PC
- BPH03T_SC_HXH31: I/O-panel for HXH31 with fiber transmitter on SC

Fiber inputs:


- BPH03R_FC/PC_HXH30: I/O-panel for HXH30 with fiber receiver on FC/PC
- BPH03R_SC_HXH30: I/O-panel for HXH30 with fiber receiver on SC
- BPH03R_FC/PC_HXH31: I/O-panel for HXH31 with fiber receiver on FC/PC
- BPH03R_SC_HXH31: I/O-panel for HXH31 with fiber receiver on SC

		Θ
HD/SD-SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	
HD/SD-SDI RECLOCKED OUTPUT	\bigcirc	
HD/SD-SDI PROCESSED OUTPUT 1	\bigcirc	
HD/SD-SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	
	\bigcirc	
GPI INPUT AND TRACKING OUTPUT	••••••••••••••••••••••••••••••••••••••	
	Ð	\bigcirc
The HXH30/31 is a dual slot card taking up 2 card positions in a frame. For fiber connectivity see www.axon.tv	BPH03 +	+ BPL00

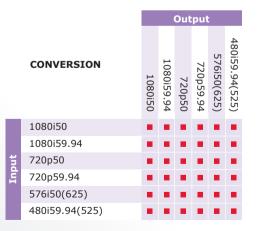
Specifications

HD/SD seria	•	Overshoot	< 10% of amplitude
Standard	625/50 or 525/59.94 SMPTE	Return loss	15dB up to 1.0Gb/s, > 10d
	259M-C (270Mb/s) with		up to 1.5Gb/s
	SMPTE 272M embedded audio	Wideband jitter	< 0.2UI
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	Reference vide	eo input
	SMPTE 296M, SMPTE 349M	Standard	PAL (ITU624-4), NTSC
	1080i/59.94, 1080i/50,		(SMPTE 170M)
	720p/59.94, 720p/50	Number of	
Equalization	Automatic to 100m @	inputs	2 on SFR18, 2 on SFR08,
	1.5Gb/s with Belden 1694A		1 on SFR04
	or equivalent cable.	Connector	BNC
Return loss	> 15dB up to 1.5GHz	Signal level	1V nominal
		Impedance	High impedance, with loop
HD serial vid	eo output		for termination
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 25dB to 10MHz
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio	Miscellaneous	
	SMPTE 292M (1.5Gb/s),	Weight	Approx. 500g
	SMPTE 260M, SMPTE 274M,	Operating	
	SMPTE 296M, SMPTE 349M	temperature	0 °C to +50 °C
	SMPTE 296M, SMPTE 349M 1080i/59.94, 1080i/50,	temperature Dimensions	0 °C to +50 °C 137 x 296 x 40 mm
	,		137 x 296 x 40 mm
Signal level	1080i/59.94, 1080i/50,		
Signal level DC offset	1080i/59.94, 1080i/50, 720p/59.94, 720p/50		137 x 296 x 40 mm
	1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal	Dimensions	137 x 296 x 40 mm
DC offset	1080i/59.94, 1080i/50, 720p/59.94, 720p/50 800mV nominal	Dimensions	137 x 296 x 40 mm (HxWxD) = DUAL SLOT

<u> HXH30 - HXH31</u>

HXH40 - HXH41 High performance HD up/down/cross & standards converter with optional audio shuffler

The HXH40/41 is a Linear SD/HD Standards converter, Up converter, Down Converter and Cross converter based on the advanced Teranex® algorithms. This high performance dual slot processing module is the pinnacle of the huge range of SD and HD conversion modules in the Synapse range. HD and SD standard conversion is a process of converting (mostly US-based) 59.94 frames/fields per second video stream is converted to 50 frames/fields per second and vice versa for 1080i, 720p, 576i, 480i.


The advanced algorithms are running on two HQV Realta chips supplied by Silicon Optix. This gives the board 2 Trillion operations per second processing power, and makes it the most powerful modular processing card at the time of its introduction.

- HD/SD-SDI input
- 1 reclocked output
- 2 processed outputs
- Frame sync with built-in 16 channel tracking audio delay
- Audio offset delay -60ms to +1240ms
- Full audio shuffling of all 16 channels (HXH41 only)
- Audio gain and phase control of all 16 channels
- GPI preset control for audio shuffling (HXH41 only)
- All audio is present on ADD-ON bus for monitoring
- Transparent to Closed Captioning

- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Conversion abilities

The HXH40 and HXH41 can process the following conversion:

НХН40 - НХН41

Applications

The HXH40/41 is the choice for all HD format conversions in a dynamically changing environment.

- High quality HD standardsconversion
- Ultra High quality Up, Down and Cross conversion
- Conversion with preset audio shuffling (HXH41 only)
- Mobile truck applications
- DVD mastering and authoring

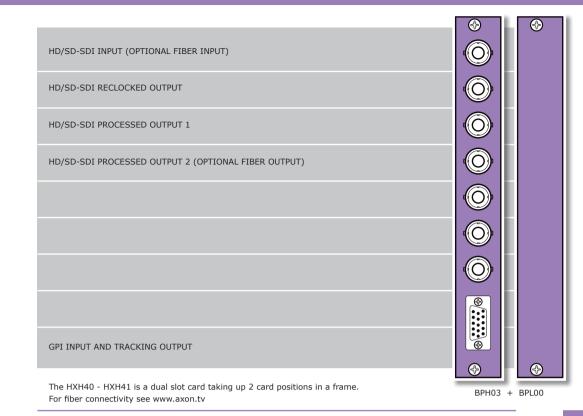
Ordering information

Module:

- HXH40: High performance
 HD standards converter
- HXH41: High performance up converter with full 16 channels of audio swapping

Standard I/O:

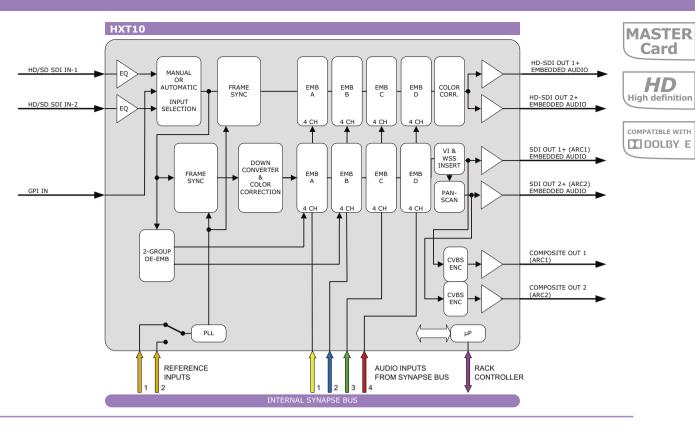
- BPH03_HXH40: I/O-panel for HSU20
- BPH03_HXH41: I/O-panel for HXH41


Fiber outputs:

- BPH03T_FC/PC_HXH40: I/O-panel for HXH40 with fiber transmitter on FC/PC
- BPH03T_SC_HXH40:
 I/O-panel for HXH40 with fiber transmitter on SC
- BPH03T_FC/PC_HXH41: I/O-panel for HXH41 with fiber transmitter on FC/PC
- BPH03T_SC_HXH41: I/O-panel for HXH41 with fiber transmitter on SC

Fiber inputs:

- BPH03R_FC/PC_HXH40: I/O-panel for HXH40 with fiber receiver on FC/PC
- BPH03R_SC_HXH40: I/O-panel for HXH40 with fiber receiver on SC
- BPH03R_FC/PC_HXH41: I/O-panel for HXH41 with fiber receiver on FC/PC


 BPH03R_SC_HXH41: I/O-panel for HXH41 with fiber receiver on SC

Specifications

Standard	video input	Overshoot Return loss	< 10% of amplitude
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 15dB up to 1.0Gb/s,
	259M-C (270Mb/s) with		> 10dB up to 1.5Gb/s
	SMPTE 272M embedded audio	Wideband jitter	< 0.2UI
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,	Reference vide	•
	SMPTE 296M, SMPTE 349M	Standard	PAL (ITU624-4), NTSC
	1080i/59.94, 1080i/50,		(SMPTE 170M)
	720p/59.94, 720p/50	Number of	
Equalization	Automatic to 100m @	inputs	2 on SFR18, 2 on SFR08,
	1.5Gb/s with Belden 1694A		1 on SFR04
	or equivalent cable.	Connector	BNC
Return loss	> 15dB up to 1.5GHz	Signal level	1V nominal
		Impedance	High impedance, with loop
HD serial vid	eo output		for termination
Standard	625/50 or 525/59.94 SMPTE	Return loss	> 25dB to 10MHz
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio	Miscellaneous	
	SMPTE 292M (1.5Gb/s),	Weight	Approx. 500g
	SMPTE 260M, SMPTE 274M,	Operating	
	SMPTE 296M, SMPTE 349M	temperature	0 °C to +50 °C
	1080i/59.94, 1080i/50,	Dimensions	137 x 296 x 40 mm
	720p/59.94, 720p/50		(HxWxD) = DUAL SLOT
Signal level	800mV nominal		
DC offset	0V ±0.5V	Electrical	
Rise and		Voltage	+24V to +30V
fall time	200ps nominal for HD, 750ps	Power	<36 Watts (dual slot)
ran time			

2

HXT10 Dual HD input, frame synchronizer, down converter, embedder, CVBS encoder

The HXT10 is a frame synchronizer and 16 channel embedder combined with an ultra high-quality down converter. The dual input capability can be used as an emergency bypass switch. The optimized scaling and filter algorithms ensure crisp broadcast ready pictures from a native HD source, by use of a 64 tap FIR filters. This card is designed as a transmission output module that enables simultaneous feeding of HD, SD (with embedded audio) and dual composite monitoring output transmitters. The ideal companion is the new DIO48 to add 8 audio channels.

- HD/SD or SDI input (auto selecting)
- Dual input backup function
 - Automatic by input carrier detection
 - Manual by direct control (ACP)
 - GPI
- 2 Frame synchronizers for the HD and SD domain with individual output timing control
- 16 channel embedder in both HD and SD domain
 - HD is 16 channel (4 group) transparent in embedder off mode
 - SD is 8 channel (2 group) transparent in embedder off mode (after Frame-sync)
- Dual HD output

- Dual SD output (simultaneous anamorphic widescreen and pan-scan)
- Dual 8 bits composite monitoring output
- Color correction in both HD and SD domain
- 1080i or 720p 50 to 625/50
- 1080i or 720p 59.94 to 525/59.94
- 1080p or 720p 25 to 625/50
- 1080p or 720p 29.97 to 525/59.94
- 1080p or 720p 23.98 to 525/59.94
- Built-in ARC for 4:3 pan-scan and 14:9 and 16:9 letterbox output and anamorphic formats
- SD Safe area marker 4:3
- H+V sharpness control in SD domain for crisp down converted picture quality
- SD coring adjustment
- WSS, WSS-ext and VI insertion in SD domain
- I/O Delay measurement for both output domain
- Reporting of chosen input
- CRC status information for both inputs
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Applications

- OB Truck output card with 16 channel embedding (in combination with 2 x DIO48)
- 2x1 HD protection switch with SD and CVBS monitoring output
- Dual domain (HD & SD) production down converter with individual timing adjustment

Ordering information

Module:

HXT10: Dual HD input, frame synchronizer, own converter, embedder, CVBS encoder

Standard I/O:

BPH05_HXT10: I/O panel for HXT10

Fiber outputs:

- BPH05T2_FC/PC_HXT10: I/O panel for HXT10 with 2 fiber transmitters on FC/PC
- BPH05T2_SC_HXT10: I/O panel for HXT10 with 2 fiber transmitters on SC

Fiber inputs:

- BPH05R2_FC/PC_HXT10: I/O panel for HXT10 with 2 fiber receivers on FC/PC
- BPH05R2_SC_HXT10: I/O panel for HXT10 with 2 fiber receivers on SC

Specifications

HD/SD serial video input S

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
	SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,
	720p/59.94, 720p/50
Equalization	Automatic to 100m @
	1.5Gb/s with Belden 1694A or
	equivalent cable.
Number of inputs	2 (auto or manual selection)
Return loss	> 15dB up to 1.5GHz

HD/SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
	SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M
	1080i/59.94, 1080i/50,
	720p/59.94, 720p/50
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise and	
fall time	200ps nominal for HD, 750ps
	nominal for SD
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 1.0Gb/s,
	> 10dB up to 1.5Gb/s

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	2
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz
	> 15dB at 270Mb/s
Wideband jitter	< 0.2UI
Video delay	minimum of 56 SD lines,
	maximum 1F +56 lines

SD/HD SDI OUTPUT 1 (OPTIONAL FIBER OUTPUT) SDI OUTPUT 1 CVBS OUTPUT 1 GPI INPUT/OUTPUT SD/HD SDI INPUT 2 (OPTIONAL FIBER INPUT) SD/HD SDI OUTPUT 2 (OPTIONAL FIBER OUTPUT)

SD/HD SDI INPUT 1 (OPTIONAL FIBER INPUT)

SDI OUTPUT 2

CVBS OUTPUT 2

For fiber connectivity see www.axon.tv

Analog video output

Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M)
	8 bits
Number of	
outputs	2
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

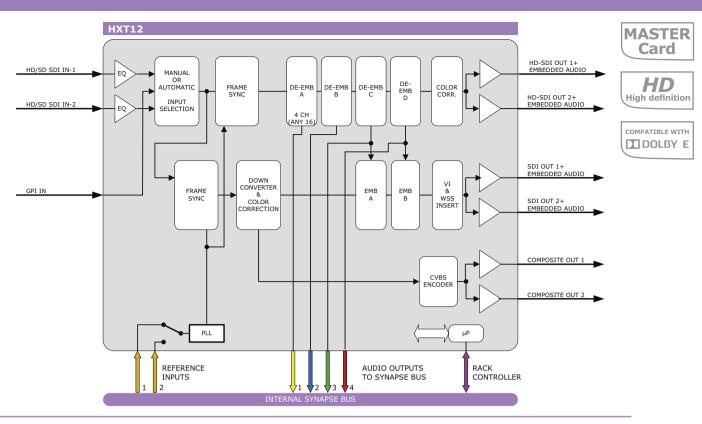
Electrical

Voltage	+24V to +30V
Power	< 11 Watts

 (\mathcal{F})

 \bigcirc

0


0

0

0000

Ó

BPH05

HXT12 Dual HD input, frame synchronizer, down converter with embedder, de-embedder and CVBS encoder

The HXT12 is a frame synchronizer and 16 channel de-embedder combined with an ultra high-quality down converter. The dual input capability can be used as an emergency bypass switch. The optimized scaling and filter algorithms ensure crisp broadcast ready pictures from a native HD source, by use of a 64 tap FIR filters. This card is designed as a transmission output module that enables simultaneous feeding of HD, SD (with embedded audio) and dual composite monitoring output transmitters with the ability to de-embed 16 channels of audio to the synapse bus.

- HD/SD or SDI input (auto selecting)
- Dual input backup function
 - Automatic by input carrier detection
 - Manual by direct control (ACP)
 - GPI
- 2 Frame synchronizers for the HD and SD domain with individual output timing control
- 16 channel de-embedder in both HD and SD domain
 - SD is 8 channel (2 group) transparent in embedder off mode (after Frame-sync)
- Dual HD output
- Dual SD output
- Dual 8 bits composite monitoring output

- Color correction in both HD and SD domain
- 1080i or 720p 50 to 625/50
- 1080i or 720p 59.94 to 525/59.94
- 1080p or 720p 25 to 625/50
- 1080p or 720p 29.97 to 525/59.94
- 1080p or 720p 23.98 to 525/59.94
- Built-in ARC for 4:3 pan-scan and 14:9 and 16:9 letterbox output and anamorphic formats
- SD Safe area marker 4:3
- H+V sharpness control in SD domain for crisp down converted picture quality
- SD coring adjustment
- WSS, WSS-ext and VI insertion in SD domain
- I/O Delay measurement for both output domain
- Reporting of chosen input
- CRC status information for both inputs
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

VIDEO FORMAT CONVERSION

Applications

- OB Truck output card with 16 channel de-embedding
- 2x1 HD protection switch with SD and CVBS monitoring output
- Dual domain (HD & SD) production down converter with individual timing adjustment

Ordering information

Module:

HXT12: Dual HD input, frame synchronizer, down converter with embedder, de-embedder, CVBS encoder

Standard I/O:

BPH05_HXT12: I/O-panel for HXT12

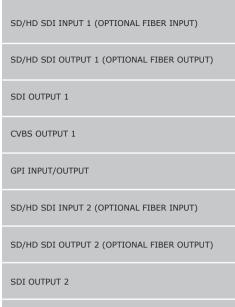
Fiber outputs:

- BPH05T2_FC/PC_HXT12: I/O-panel for HXT12 with 2 fiber transmitters on FC/PC
- BPH05T2 SC HXT12: I/O-panel for HXT12 with 2 fiber transmitters on SC

Fiber inputs:

- BPH05R2_FC/PC_HXT12: I/O-panel for HXT12 with 2 fiber receivers on FC/PC
- BPH05R2_SC_HXT12: I/O-panel for HXT12 with 2 fiber receivers on SC

Specifications


HD/SD serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
	SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,	
	SMPTE 296M, SMPTE 349M	
	1080i/59.94, 1080i/50,	
	720p/59.94, 720p/50	
Equalization	Automatic to 100m @	
	1.5Gb/s with Belden 1694A	
	or equivalent cable	
Number of inputs	2 (auto or manual selection)	
Return loss	> 15dB up to 1.5GHz	

HD/SD serial video output

	-	
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
	SMPTE 292M (1.5Gb/s),	
	SMPTE 260M, SMPTE 274M,	
	SMPTE 296M, SMPTE 349M	
	1080i/59.94, 1080i/50,	
	720p/59.94, 720p/50	
Signal level	800mV nominal	
DC offset	0V ±0.5V	
Rise and		
fall Time	200ps nominal for HD, 750ps	
	nominal for SD	
Overshoot	< 10% of amplitude	
Return loss	> 15dB up to 1.0Gb/s,	
	> 10dB up to 1.5Gb/s	

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	2
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz
Return loss	> 15dB at 270Mb/s
Wideband jitter	< 0.2UI
Video delay	minimum of 56 SD lines,
	maximum 1F +56 lines

CVBS OUTPUT 2

For fiber connectivity see www.axon.tv

Analog video output

Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M)
	8 bits
Number of	
outputs	2
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

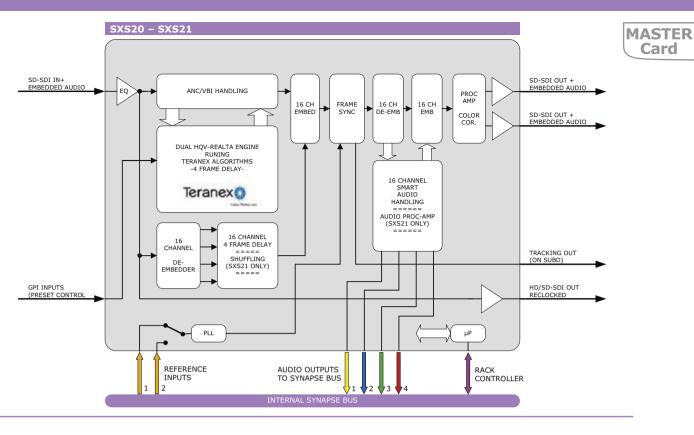
Electrical

Voltage	+24V to +30V
Power	<11 Watts

 (\mathcal{F})

 \bigcirc

0


0

0

0000

Ó

BPH05

SXS20 - SXS21 High performance SD standards converter

The SXS20/21 Linear SD Standards Converter is based on the advanced Teranex® algorithms. This high performance dual slot processing module is the pinnacle of the huge range of SD and HD conversion modules in the Synapse range. SD standard conversion is a process of converting (mostly US-based) 59.94 frames/fields per second video stream is converted to 50 frames/fields per second and vice versa for 576i, 480i.

The advanced algorithms are running on two HQV Realta chips supplied by Silicon Optix. This gives the board 2 Trillion operations per second processing power, and makes it the most powerful modular processing card at the time of its introduction.

- SD -SDI input
- 1 reclocked output
- 2 processed outputs
- 576i/50 to 480i/59.94 conversion
- 480i/59.94 to 576/50 conversion
- Frame sync with built-in 16 channel tracking audio delay
- Audio offset delay -60ms to +1240ms
- Full audio shuffling of all 16 channels (SXS21 only)
- Audio gain and phase control of all 16 channels (SXS21 only)

- GPI preset control for audio shuffling (SXS21 only)
- All audio is present on ADD-ON bus for monitoring
- Transparent to Closed Captioning
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Conversion abilities

The SXS20 and SXS21 can process the following conversion:

				Out	put	:	
	CONVERSION	1080i50	1080i59.94	720p50	720p59.94	576i50(625)	480i59.94(525)
	1080i50						
	1080i59.94						
Input	720p50						
	720p59.94						
	576i50(625)						
	480i59.94(525)						•

video processing

Applications

The SXS20/21 is the choice for all SD standards conversion applications where a modular implementation with redundant power supplies, SNMP and hot swap ability is required.

- Highest quality SD standards-conversion
- Ingest standards-converting with preset audio shuffling (SXS21 only)
- Mobile truck applications
- DVD mastering and authoring

Ordering information

Module:

- **SXS20:** High performance SD standards converter
- SXS21: High performance SD standards converter with full 16 channels of audio swapping

Standard I/O:

- BPH03 SXS20: I/O-panel for SXS20
- BPH03_SXS21: I/O-panel for SXS21

Fiber outputs:

- BPH03T FC/PC SXS20: I/O-panel for SXS20 with fiber transmitter on FC/PC
- BPH03T_SC_SXS20: I/O-panel for SXS20 with fiber transmitter on SC
- BPH03T FC/PC SXS21: I/O-panel for SXS21 with fiber transmitter on FC/PC
- BPH03T SC SXS21: I/O-panel for SXS21 with fiber transmitter on SC

Fiber inputs:

- BPH03R FC/PC SXS20: I/O-panel for SXS20 with fiber receiver on FC/PC
- BPH03R SC SXS20: I/O-panel for SXS20 with fiber receiver on SC
- BPH03R FC/PC SXS21: I/O-panel for SXS21 with fiber receiver on FC/PC
- BPH03R SC SXS21: I/O-panel for SXS21 with fiber receiver on SC

CVBS outputs:

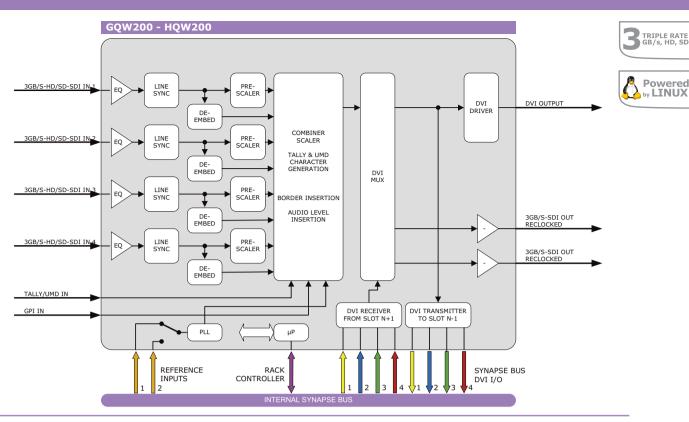
- BPH03C_SXS20: I/O-panel for SXS20 with CVBS output
- BPH03C_SXS21: I/O-panel for SXS21 with CVBS output

	- €>	
SD-SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	
SD-SDI RECLOCKED OUTPUT	\bigcirc	
SD-SDI PROCESSED OUTPUT 1	\bigcirc	
SD-SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	
GPI INPUT AND TRACKING OUTPUT		
The SXS20/21 is a dual slot card taking up 2 card positions in a frame.	A	8
For fiber connectivity see www.axon.tv	BPH03	+ BPL00

Specifications

SD serial video input **Reference video input** Standard 625/50 or 525/59.94 SMPTE Standard PAL (ITU624-4), NTSC (CMDTE 170M) 259M-C (270Mb/s) with SMPTE 272M embedded audio Numbe Equalization Automatic to 300m @ inputs 270Mb/s with Belden 1694A or equivalent cable. Connec **Return loss** > 15dB up to 1.5GHz Signal I Impeda SD serial video output Standard 625/50 or 525/59.94 SMPTE Return 259M-C (270Mb/s) with SMPTE 272M embedded audio Miscel Signal level 800mV nominal Weight DC offset 0V ±0.5V Operati **Rise and** tempera fall time 750ps nominal for SD Dimens Overshoot < 10% of amplitude **Return loss** > 15dB up to 1.0Gb/s, > 10dB up to 1.5Gb/s Electri Wideband jitter < 0.2UI Voltage Power

	(SMPTE 170M)
r of	
	2 on SFR18, 2 on SFR08, 1 on
	SFR04
tor	BNC
level	1V nominal
ance	High impedance, with loop for
	termination
loss	> 25dB to 10MHz
laneous	
	Approx. 250g
ing	
ature	0 °C to +50 °C
sions	137 x 296 x 40 mm (HxWxD)
	= DUAL SLOT
cal	
3	+24V to +30V
	<33 Watts (dual slot)


HQW200: Gives complete GUI of resultant output, allows control of multiple cards from one dialog, allows local presets/ screen layouts to be saved and recalled from local files on the PC, allows standard mouse movement to control the size shape and position of the windows. Gives options to hold aspect ratio, snap to grid and stop overlapping windows on movement.

JANESE

Dynamic UMD

GQW200 - HQW200 - SQW200 Triple rate SDI quad split/multiview building block

The GQW200 is a high-quality 4x 3Gb/s or HD or SD-SDI (in any combination) to QWXGA converter on DVI or 3Gb/s HD SDI out. The unit supports resolutions up to 1920x1200. A Tally and UMD OSD is included. This will enable a very compact monitor solution with the UMD and Tally as part of the set. High-quality in-house developed de-interlacing and scaling algorithms ensure crisp picture quality. The GQW200 is triple rate (3Gb/s, HD and SD) and the HQW200 is HD and SD, the SQW200 is SD, both are upgrade-able to handle 3Gb/s.

- Quad-split function or full-screen mode for each input
- Low latency (20 mS for 50Hz, 17 mS for 59.94Hz)
- Full 10 bit in RGB domain (internal 20bit processing for scaling)
- UP to 1920x1200 resolution on DVI (BPH15)
- Up to 1920x1080p on 3Gb/s SDI output (BPH16)
- Full variable scaling and positioning for all individual inputs
- All inputs compatible with (mixing is allowed within equal framerates):
 - 1080p 50 an 59.94
 - 1080i and 720p 50 and 59.94 Hz
 - 1080p (sf) and 720p 29.97/25/24
 - 1035i 60
 - SD 625 and 525
- 15-pole sub-D connector for serial UMD, Tally protocols (TSL and ASCII) and GPI triggers
- 8 and 16 character UMD capability

- Three assignable regions in or under monitor
 - Input format
 Static UMD
- Lock to input, reference or free running
- Audio metering
- 4 free selectable OSD audio level Bar-graphs
 - Masked or transparent bar-graphs
 - AES/EBU, BBC, Nordic and VU scales
 - Phase correlation between two AES channels
- Color corrector
- UMD colors:
 - White Green
 - Red Amber
- Border, UMD and tally brightness adjustment
- Safe area:
 - Action Graphics
 - Action + Graphics Shoot and protect 4:3
 - Shoot and protect Action
 - Shoot and protect Graphics
 - Shoot and protect Action + Graphics
- Automatic 4:3 and 16:9 modes through VI or WSS triggers (SD-SDI inputs)
- GPI control for:
 - Aspect ratio (4:3 or 16:9)
 - Full screen or quad mode
 - Tally
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Clock on VITC possible

GQW200 - HQW200 - SOW200

video processing

A A

Applications

- High resolution monitor walls
- OB Truck preview monitoring and shading

Ordering information

Module:

- GQW200: 3Gb/s, HD, SD SDI quad split to QWXGA converter on DVI or (3Gb/s-HD) SDI
- HQW200: HD/SD-SDI quad split to QWXGA converter on DVI or HD SDI. (upgradeable to handle 3Gb/s)
- SQW200: SD-SDI quad split to QWXGA converter on DVI or SDI. (upgradeable to handle 3Gb/s)

Standard I/O:

BPH15_GQW200: I/O-panel for GQW200 with DVI output

- BPH15_HQW200:
 I/O-panel for HQW200 with
 DVI output
- BPH15_SQW200:
 I/O-panel for SQW200 with
 DVI output

BPH16_GQW200: I/O-panel for GQW200 with SDI output

BPH16_HQW200:
 I/O-panel for HQW200 with
 SDI output

BPH16_SQW200:

I/O-panel for SQW200 with SDI output

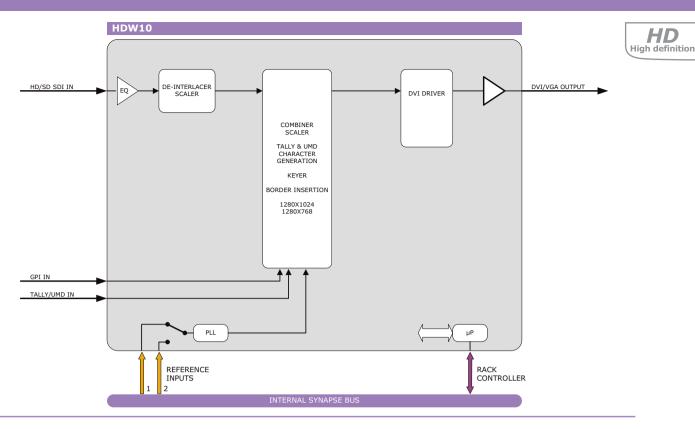
3GB/S, HD, SD SDI INPUT 1	\bigcirc	\bigcirc
3GB/S, HD, SD SDI INPUT 2	\bigcirc	\bigcirc
3GB/S, HD, SD SDI INPUT 3	\bigcirc	\bigcirc
3GB/S, HD, SD SDI INPUT 4	\bigcirc	\bigcirc
TALLY UMD AND GPI		
		\odot
DVI OUTPUT (BPH15) 2X SDI OUT (BPH16)		\bigcirc
		
	ا	Ð

BPH15

BPH16

Specifications

HD/SD serial video input Standard 625/50 or 525/59.94 SMPTE 259M-C (270Mb/s) with SMPTE 272M embedded audio SMPTE 292M (1.5Gb/s), SMPTE 260M, SMPTE 274M, SMPTE 296M, SMPTE 349M, SMPTE424 1080i/59.94, 1080i/50, 720p/59.94, 720p/50 1080p/50 and 1080p/59.94 Equalization Automatic to 130m @ 1.5Gb/s with Belden 1694A or equivalent cable Automatic to 100m @ 3Gb/s with Belden 1694A or equivalent cable **Return loss** > 15dB up to 1.5GHz Number of inputs 4


Reference video input

Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz

DVI output	
Standard	DVI digital single link
	1920 x 1200
Number of	
outputs	1
Cable driver	Up to 10 meter of high
	quality DVI cable (Gefen)
SDI output	
Standard	SMPTE 292M (1.5Gb/s),
	SMPTE 260M, SMPTE 274M,
	SMPTE 296M, SMPTE 349M,
	SMPTE424A
Number of	
outputs	2 (optional Dual link)
Miscellaneous	
Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<16 Watts

HDW10 HD/SD SDI to WXGA converter on VGA and DVI

The HDW10 is a high-quality SD/HD-SDI converter on DVI or VGA. The unit supports 2 output resolutions: 1280x768 and 1280x1024. A Tally and UMD OSD is included. This will enable a very compact monitor solution with the UMD and Tally as part of the set. Highquality in-house developed de-interlacing and scaling algorithms ensure crisp picture quality.

- 1280x1024 and 1280x768 resolution on DVI (BPH10)
- 1280x1024 on VGA (BPH11)
- HD SDI input 1 compatible with:
 - 1080i and 720p 50 and 59.95 Hz
 - 1080p(sf) and 720p 29.97/25/24
 - 1035i 59.94
 - SD 625 and 525
- 15-pole sub-D connector for serial UMD, Tally protocols (TSL and ASCII) and GPI triggers
- 8 and 16 character UMD capability
- Lock to input, reference or free running
- Color corrector
- UMD colors:
 - White
 - Green
 - Red
 - Amber

- Border, UMD and tally brightness adjustment
- Safe area:
 - Action
 - Graphics
 - Action + Graphics
 - Shoot and protect 4:3
 - Shoot and protect Action
 - Shoot and protect Graphics
 - Shoot and protect Action + Graphics
- Automatic 4:3 and 16:9 modes through VI or WSS triggers
- GPI control for:
 - Aspect ratio (4:3 or 16:9
 - Full screen or quad mode
 - Tally
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

1DW10

video processing

Applications

- High resolution monitor walls
- Truck preview monitoring and shading
- Compact Sony LMD-170/171/172 and 230W control unit (replaces MEU-WX1) 18 channels in 4 RU

Ordering information

Module:

 HDW10: HD/SD-SDI to WXGA converter on VGA and DVI

Standard I/O:

BPH10_HDW10:
 I/O panel for HDW10 with
 DVI output

BPH11_HDW10: I/O panel for HDW10 with VGA output

	Θ	A
HD/SD SDI INPUT 1	\bigcirc	\bigcirc
	\bigcirc	\bigcirc
	\bigcirc	\bigcirc
	\bigcirc	\odot
TALLY UMD AND GPI INPUTS	@	
DVI (BPH10) OR VGA (BPH11) OUTPUT		-
	€	Ð
For fiber connectivity see www.axon.tv	BPH10	BPH11

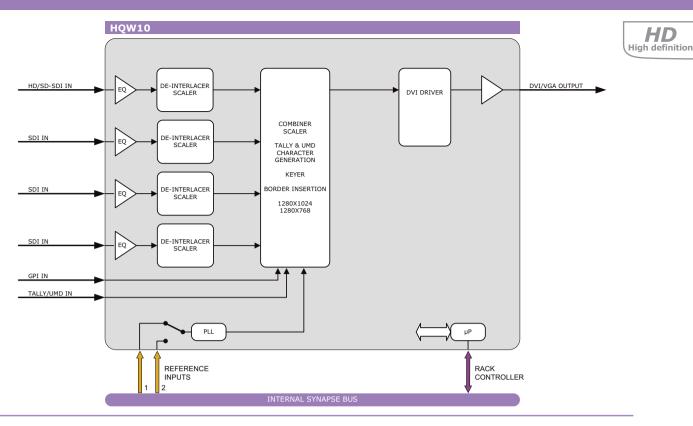
Specifications

HD/SD seria	DVI o	
Standard	625/50 or 525/59.94 SMPTE	Standa
	259M-C (270Mb/s) with	Numbe
	SMPTE 272M embedded audio	output
	SMPTE 292M (1.5Gb/s),	Cable o
	SMPTE 260M, SMPTE 274M,	
	SMPTE 296M, SMPTE 349M	
	1080i/59.94, 1080i/50,	Misce
	720p/59.94, 720p/50	Weight
Number of		Operat
inputs	1	temper
Equalization	Automatic to 100m @	Dimen
	1.5Gb/s with Belden 1694A or	
	equivalent cable.	Electr
Return loss	> 15dB up to 1.5GHz	Voltage
		Power

Reference video input

	•
Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop for
	termination
Return loss	> 25dB to 10MHz

/I output andard DVI digital single link mber of tputs 1 ble driver Up to 10 meter of high quality DVI cable (Gefen)


liscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

ectrical

Voltage	+24V to +30V
Power	11 Watts

HQW10 HD (1)/SD quad split to WXGA converter on VGA and DVI with HD-SDI single channel display capabilities

The HQW10 is a high-quality 3x SD-SDI + 1 HD-SDI or 4x SD-SDI to WXGA converter on DVI or VGA. The unit supports 2 output resolutions: 1280x768 and 1280x1024. A Tally and UMD OSD is included. This will enable a very compact monitor solution with the UMD and Tally as part of the set. High-quality in-house developed de-interlacing and scaling algorithms ensure crisp picture quality.

- Quadsplit function or full-screen mode for each input
 - 1x HD + 3x SD in 1280x768 output resolution
- 1280x1024 and 1280x768 resolution on DVI (BPH10)
- 1280x1024 on VGA (BPH11 no HD)
- HD SDI input 1 compatible with:
 - 1080i and 720p 50 and 59.95 Hz
 - 1080p (sf) and 720p 29.97/25/24
 - 1035i 60
 - SD 625 and 525
- 15 pins sub-D connector for serial UMD, Tally protocols (TSL and ASCII) and GPI triggers
- 8 and 16 character UMD capability
- Lock to input, reference or free running
- Color corrector

- UMD colors:
 - White
 - Green
 - Red
 - Amber
- Border, UMD and tally brightness adjustment
- Safe area:
 - Action
 - Graphics
 - Action + Graphics
 - Shoot and protect 4:3
 - Shoot and protect Action
 - Shoot and protect Graphics
 - Shoot and protect Action + Graphics
- Automatic 4:3 and 16:9 modes through VI or WSS triggers
- GPI control for:
 - Aspect ratio (4:3 or 16:9)
 - Full screen or quad mode
- Tally
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

video processing

n il n

Applications

- High resolution monitor walls
- Truck preview monitoring and shading
- Compact Sony LMD-170/171/172 and 230W control unit (replaces MEU-WX1) 18 channels in 4 RU (72 SDI inputs)

Ordering information

Module:

 HQW10: HD (1)/SD quad split to WXGA converter on VGA and DVI with HD-SDI single channel display capabilities

Standard I/O:

- BPH10_HQW10:
 I/O panel for HQW10
 with DVI output
- BPH11_HQW10:
 I/O panel for HQW10
 with VGA output

HD/SD SDI INPUT 1	0	\bigcirc
SD SDI INPUT 2	\bigcirc	\bigcirc
SD SDI INPUT 3	\bigcirc	\bigcirc
SD SDI INPUT 4	\bigcirc	\bigcirc
TALLY UMD AND GPI INPUTS	@ 	\$
DVI (BPH10) OR VGA (BPH11) OUTPUT		
	€	Ð
	BPH10	BPH11

Specifications

Number of

Connector Signal level

Impedance

Return loss

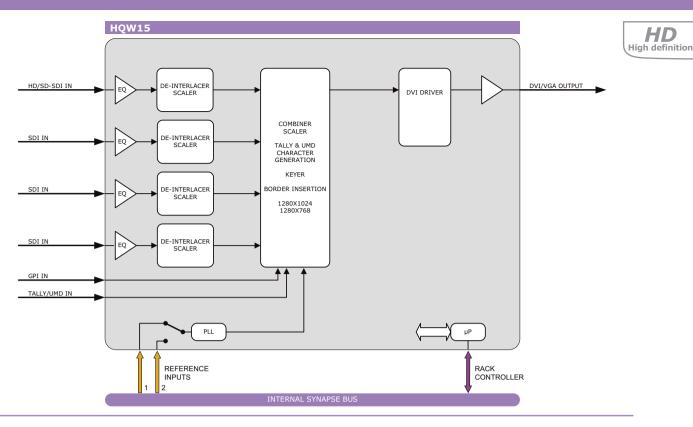
inputs

HD/SD seria	l video input	DVI output	
Standard	625/50 or 525/59.94 SMPTE	Standard	DVI digital single link
	259M-C (270Mb/s) with	Number of	
	SMPTE 272M embedded audio	outputs	1
	SMPTE 292M (1.5Gb/s),	Cable driver	Up to 10 meter of high
	SMPTE 260M, SMPTE 274M,		quality DVI cable (Gefen)
	SMPTE 296M, SMPTE 349M		
	1080i/59.94, 1080i/50,	Miscellaneou	S
	720p/59.94, 720p/50	Weight	Approx. 250g
Number of		Operating	
inputs	4	temperature	0 °C to +50 °C
Equalization	Automatic to 100m	Dimensions	137 x 296 x 20 mm (HxWxD)
	@ 1.5Gb/s with Belden		
	1694A or equivalent cable.	Electrical	
Return loss	> 15dB up to 1.5GHz	Voltage	+24V to +30V
		Power	11 Watts
Reference vi	deo input		
Standard	PAL (ITU624-4),		

NTSC (SMPTE 170M)

1 on SFR04 BNC

1V nominal


for termination

> 25dB to 10MHz

2 on SFR18, 2 on SFR08,

High impedance, with loop

HQW10

HQW15 HD/SD quad split to WXGA converter on VGA and DVI with full-screen display capabilities

The HQW15 is a high-quality 4x HD/SD-SDI to WXGA converter on DVI or VGA. The unit supports 2 output resolutions: 1280x768 and 1280x1024. A Tally and UMD OSD is included. This will enable a very compact monitor solution with the UMD and Tally as part of the set. High-quality in-house developed de-interlacing and scaling algorithms ensure crisp picture quality with a very low 1 Field internal propagation delay.

- Quad-split function or full-screen mode for each input
- Low latency (1 Field)
- 1280x1024 and 1280x768 resolution on DVI (BPH12)
- 1280x1024 and 1280x768 resolution on DVI with extended DVI cable length (BPH13)
- 1280x1024 and 1280x768 on VGA (BPH14)
- All inputs compatible with (mixing is allowed within equal framerates):
 - 1080i and 720p 50 and 59.95 Hz
 - 1080p (sf) and 720p 29.97/25/24
 - 1035i 60
 - SD 625 and 525
- 15 pins sub-D connector for serial UMD, Tally protocols (TSL and ASCII) and GPI triggers
- 8 and 16 character UMD capability
- Lock to input, reference or free running
- Color corrector

- UMD colors:
 - White
 - Green
 - Red
 - Amber
- Border, UMD and tally brightness adjustment
- Safe area:
 - Action
 - Graphics
 - Action + Graphics
 - Shoot and protect 4:3
 - Shoot and protect Action
 - Shoot and protect Graphics
 - Shoot and protect Action + Graphics
- Automatic 4:3 and 16:9 modes through VI or WSS triggers
- GPI control for:
 - Aspect ratio (4:3 or 16:9)
 - Full screen or quad mode
 - Tally
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

298

video processing

Applications

- High resolution monitor walls
- Truck preview monitoring and shading
- Compact Sony LMD-170/171/172 and 230W control unit (replaces MEU-WX1) 18 channels in 4 RU (72 HD/SD SDI inputs)

Ordering information

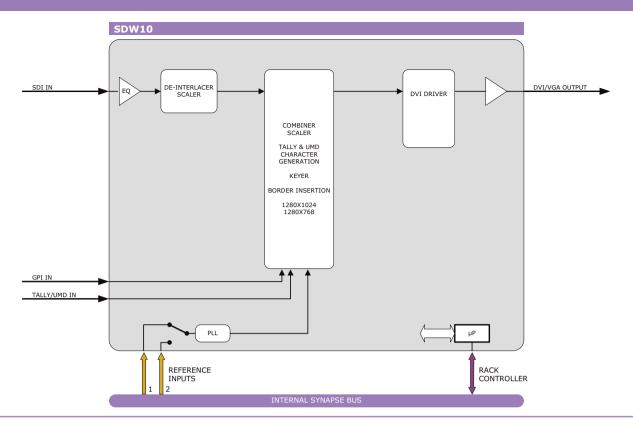
Module:

 HQW15: HD/SD quad split to WXGA converter on VGA and DVI with full screen capabilities

Standard I/O:

- BPH12_HQW15:
 I/O-panel for HQW15
 with DVI output
- BPH14_HQW15:
 I/O-panel for HQW15
 with VGA output

HD/SD SDI INPUT 1		
HD/SD SDI INPUT 2	\bigcirc	\bigcirc
HD/SD SDI INPUT 3	\bigcirc	\bigcirc
HD/SD SDI INPUT 4	\bigcirc	\bigcirc
TALLY UMD AND GPI INPUTS	@ 	() () () () () () () () () () () () () (
DVI (BPH12) OR VGA (BPH14) OUTPUT		● ● ●
	Ð	e
	BPH12	BPH14


Specifications

Return loss

> 25dB to 10MHz

110/ 50 Scha	video input	DVI output	
Standard	625/50 or 525/59.94 SMPTE	Standard	DVI digital single link
	259M-C (270Mb/s) with	Number of	
	SMPTE 272M embedded audio	outputs	1
	SMPTE 292M (1.5Gb/s),	Cable driver	Up to 10 meter of high
	SMPTE 260M, SMPTE 274M,		quality DVI cable (Gefen)
	SMPTE 296M, SMPTE 349M		
	1080i/59.94, 1080i/50,	VGA output	
	720p/59.94, 720p/50	Standard	VGA analog
Number of		Number of	
inputs	4	outputs	1
Equalization	Automatic to 100m		
	@ 1.5Gb/s with Belden	Miscellaneou	s
	1694A or equivalent cable	Weight	Approx. 250g
Return loss	> 15dB up to 1.5GHz	Operating	
		temperature	0 °C to +50 °C
Reference vi	deo input	Dimensions	137 x 296 x 20 mm (HxWxD
Standard	PAL (ITU624-4),		
	NTSC (SMPTE 170M)	Electrical	
Number of		Voltage	+24V to +30V
inputs	2 on SFR18, 2 on SFR08,	Power	11 Watts
	1 on SFR04		
Connector	BNC		
Signal level	1V nominal		
Impedance	High impedance, with loop		

Majore

SDW10 SDI to WXGA converter on VGA and DVI

The SDW10 is a high-quality 1x SDI to WXGA converter on DVI or VGA. The unit supports 2 output resolutions: 1280x768 and 1280x1024. A Tally and UMD OSD is included. This will enable a very compact monitor solution with the UMD and Tally as part of the set. High-quality in-house developed de-interlacing and scaling algorithms ensure crisp picture quality.

- 1280x1024 and 1280x768 resolution on DVI (BPH10)
- 1280x1024 on VGA (BPH11)
- SD 625 and 525
- 15-pole sub-D connector for serial UMD, Tally protocols (TSL and ASCII) and GPI triggers
- 8 and 16 character UMD capability
- Lock to input, reference or free running
- Color corrector
- UMD colors:
 - White
 - Green
 - Red
 - Amber
- Border, UMD and tally brightness adjustment

- Safe area:
 - Action
 - Graphics
 - Action + Graphics
 - Shoot and protect 4:3
 - Shoot and protect Action
 - Shoot and protect Graphics
 - Shoot and protect Action + Graphics
- Automatic 4:3 and 16:9 modes through VI or WSS triggers
- GPI control for:
 - Aspect ratio (4:3 or 16:9)
 - Full screen or quad mode
 - Tally
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

video processing

Applications

- High resolution monitor walls
- Truck preview monitoring and shading
- Compact Sony LMD-170/171/172 and 230W control unit (replaces MEU-WX1) 18 channels in 4 RU

Ordering information

Module:

 SDW10: SDI to WXGA converter on VGA and DVI

Standard I/O:

- BPH10_SDW10:
 I/O panel for SDW10 with
 DVI output
- BPH11_SDW10:

I/O panel for SDW10 with VGA output

SD SDI INPUT	\bigcirc	0
	\bigcirc	0
	\bigcirc	0
	\bigcirc	0
TALLY UMD AND GPI INPUTS	®	®
DVI (BPH10) OR VGA (BPH11) OUTPUT	®	@@
	Image: A start of the start	
For fiber connectivity see www.axon.tv	BPH10	BPH11

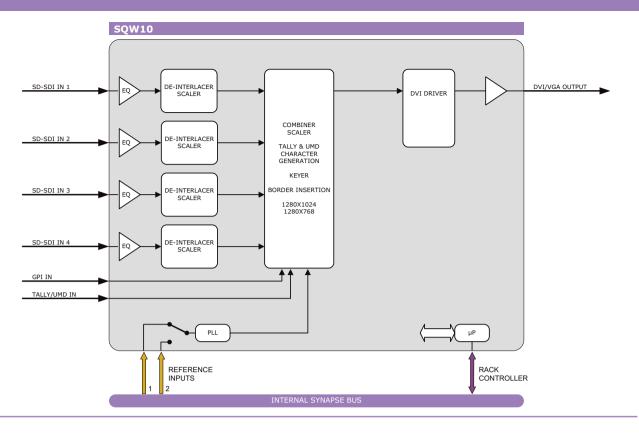
Specifications

Serial video in	put	Misce
Standard	625/50 or 525/59.94 SMPTE	Weigh
	259M-C (270Mb/s) with	Opera
	SMPTE 272M embedded audio	tempe
Number of inputs	1	Dimer
Equalization	Automatic to 150m @	
	270Mb/s with Belden 1694A	Elect
	or equivalent cable	Voltag
Return loss	> 15dB up to 270MHz	Powe

Reference video input

Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz

DVI output


Standard	DVI digital single link
Number of	
outputs	1
Cable driver	Up to 10 meter of high
	quality DVI cable (Gefen)

Miscellaneous

hiscentaricous	
Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

lectrical

/oltage	+24V to +30V
ower	11 Watts

SQW10 SDI quad split to WXGA converter on VGA and DVI

The SQW10 is a high-quality 4x SDI to WXGA converter on DVI or VGA. The unit supports 2 output resolutions: 1280x768 and 1280x1024. A Tally and UMD OSD is included. This will enable a very compact monitor solution with the UMD and Tally as part of the set. High-quality in-house developed de-interlacing and scaling algorithms ensure crisp picture quality.

- Quad split or full-screen mode for each input
- 1280x1024 and 1280x768 resolution on DVI (BPH10)
- 1280x1024 on VGA (BPH11)
- SD 625 and 525
- 15-pole sub-D connector for serial UMD, Tally protocols (TSL and ASCII) and GPI triggers
- 8 and 16 character UMD capability
- Lock to input, reference or free running
- Color corrector
- UMD colors:
 - White
 - Green
 - Red
 - Amber

- Border, UMD and tally brightness adjustment
- Safe area:
 - Action
 - Graphics
 - Action + Graphics
 - Shoot and protect 4:3
 - Shoot and protect Action
 - Shoot and protect Graphics
 - Shoot and protect Action + Graphics
- Automatic 4:3 and 16:9 modes through VI or WSS triggers
- GPI control for:
 - Aspect ratio (4:3 or 16:9)
 - Full screen or quad mode
 - Tally
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

video processing

Applications

- High resolution monitor walls
- Truck preview monitoring and shading
- Compact Sony LMD-170/171/172 and 230W control unit (replaces MEU-WX1) 18 channels in 4 RU (72 SDI inputs)

Ordering information

Module:

 SQW10: SDI quad split to WXGA converter on VGA and DVI

Standard I/O:

BPH10_SQW10:
 I/O panel for SQW10 with
 DVI output

BPH11_SQW10: I/O panel for SQW10 with VGA output

_			(
SD	SDI INPUT 1	\bigcirc	\bigcirc
SD	SDI INPUT 2	\bigcirc	\bigcirc
SD	SDI INPUT 3	\bigcirc	
SD	SDI INPUT 4		\bigcirc
TAL	LY UMD AND GPI INPUTS	®	@
DVI	(BPH10) OR VGA (BPH11) OUTPUT	 ● ●	
		<₽	€
		BPH10	BPH11

Specifications

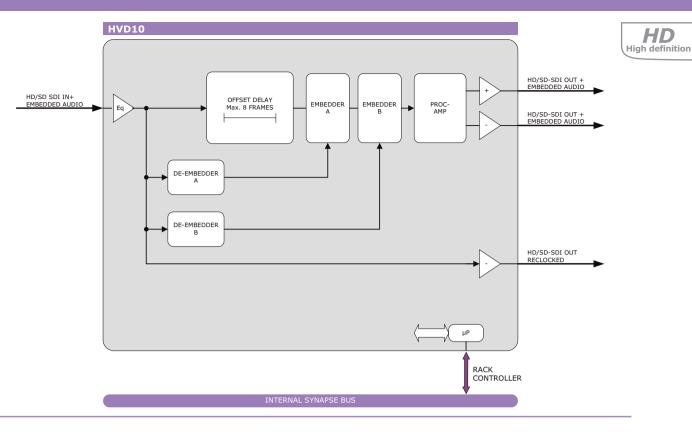
Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	4	
Equalization	Automatic to 150m @	
	270Mb/s with Belden 1694A	
	or equivalent cable	
Return loss	> 15dB up to 270MHz	

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	11 Watts


Reference video input

Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of	
inputs	2 on SFR18, 2 on SFR08, 1
	on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz

DVI output

Standard	DVI digital single link
Number of	
outputs	1
Cable driver	Up to 10 meter of high
	quality DVI cable (Gefen)

SQW10

HVD10 HD video delay (31 frames)

The HVD10 is an HD-SDI video offset delay of up to 31 frames (adjustable in frames, lines and pixels). The unit has a Serial Digital (HD-SDI) component input at 1.485 Gb/s, one re-clocked HD-SDI output and 2 delayed HD-SDI outputs.

- Adjustable offset delay up to 31 frames
- Adjustable dely setting per format i.e. 1080, 720 and SD
- Adjustment in frames, lines and pixels
- Proc Amp
- Full transparent delay for video and audio
- 2 Groups of audio can be processed with minimum delay (or matching video delay)
- ANC H + V blanking
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

Applications

- Timing correction in HD virtual studios
- `Late' embedded audio correction

Ordering information

Module:

 HVD10: HD/SD video delay (8 frames)

Standard I/O:

BPH01_HVD10: I/O panel for HVD10

Fiber outputs:

 BPH01T_FC/PC_HVD10: I/O panel for HVD10 with fiber transmitter on FC/PC

 BPH01T_SC_HVD10:
 I/O panel for HVD10 with fiber transmitter on SC

Fiber inputs:

- BPH01R_FC/PC_HVD10:
 I/O panel for HVD10 with
 fiber receiver on FC/PC
- BPH01R_SC_HVD10: I/O panel for HVD10 with fiber receiver on SC

HD/SD SDI RECLOCKED INPUT

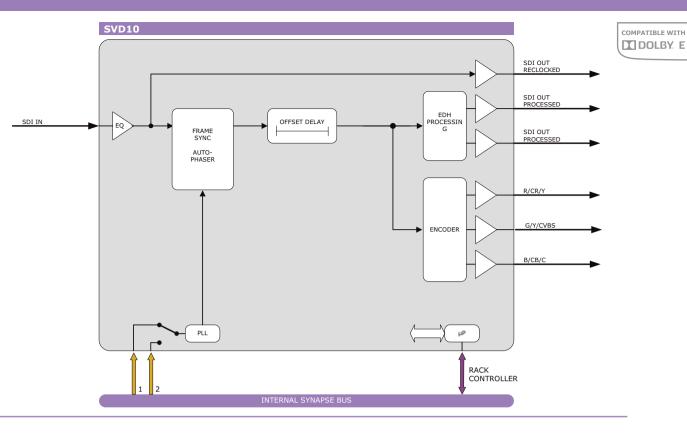
HD/SD SDI PROCESSED OUTPUT 1

HD/SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT

FREEZE

For fiber connectivity see www.axon.tv

Specifications


SD/HD serial	l video input	DC offset	0V ±0.5V
Standard	625/50 or 525/59.94 SMPTE	Rise and	
	259M-C (270Mb/s) with	fall time	200ps nominal for HD, 750ps
	SMPTE 272M embedded audio		nominal for SD
	SMPTE 292M (1.5Gb/s),	Overshoot	< 10% of amplitude
	SMPTE 260M, SMPTE 274M,	Return loss	> 15dB up to 1.0Gb/s, $>$
	SMPTE 296M, SMPTE 349M		10dB up to 1.5Gb/s
	1080i/59.94, 1080i/50,	Wideband jitter	< 0.2UI
	720p/59.94, 720p/50		
Number of		Miscellaneous	
inputs	1	Weight	Approx. 250g
Equalization	Automatic to 100m @	Operating	
	1.5Gb/s with Belden 1694A	temperature	0 °C to +50 °C
	or equivalent cable.	Dimensions	137 x 296 x 20 mm (HxWxD
Return loss	> 15dB up to 1.5GHz		
		Electrical	
HD serial vid	eo output	Voltage	+24V to +30V
Standard	625/50 or 525/59.94 SMPTE	Power	<8 Watts
	259M-C (270Mb/s) with		
	SMPTE 272M embedded audio		
	SMPTE 292M (1.5Gb/s),		
	SMPTE 260M, SMPTE 274M,		
	SMPTE 296M, SMPTE 349M		
	1080i/59.94, 1080i/50,		
	720p/59.94, 720p/50		
Number of			
outputs	3		

(1 reclocked and 2 processed)

800mV nominal

Signal level

- FIBER OUTPUT)	

SVD10 Universal frame synchronizer with extended (24 frames) video delay offset and monitoring D/A converter

The SVD10 is a frame synchronizer, with autophaser and video delay of up to 24 frames (adjustable in frames, lines and pixels). The synchronizer function can be used to synchronize a non-synchronous signal or to compensate for a delay. New sync codes (TRS) are being generated and re-inserted in the output signal. The SVD10 has a totally transparent blanking, both horizontally and vertically. The unit has a Serial Digital (SDI) component input at 270Mb/s, one re-clocked SDI output and two synchronized/ delayed SDI outputs. Furthermore, the card has a programmable analog video output, RGB, composite and component. The video reference is connected through the central genlock input of the SFR18, SFR08 or SFR04 frames. The line synchronizer function corrects timing errors (hops) that occur due to switching in a router. In this case, a video reference is not required as the output clock frequency is derived from the input video clock.

- Adjustable offset delay up to 24 frames
 Adjustment in frames, lines and pixels
- Frame synchronizer mode
- Line synchronizer/autophaser function in synchronizer mode
- Panic Freeze and manual Freeze
- V-bit synchronizing for enhanced autophasing (in 626 only)
- Analog preview output (RGB, YPrPb, CVBS+YC)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 and the Ethernet port (ACP)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

VIDEO DELAY SOLUTIONS

video delays

compensation

compensation

Ordering

converter

Standard I/O:

for SVD10

bypass

Fiber outputs:

Fiber inputs:

CVBS output:

output

BPL01T_FC/PC_SVD10:

I/O panel for SVD10 with

fiber transmitter on FC/PC BPL01T_SC_SVD10:

I/O panel for SVD10 with

fiber transmitter on SC

BPL01R_FC/PC_SVD10:

I/O panel for SVD10 with

fiber receiver on FC/PC

BPL01R_SC_SVD10: I/O panel for SVD10 with

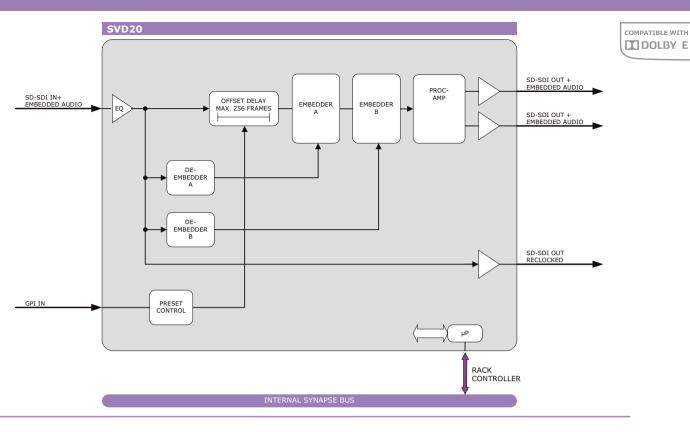
fiber receiver on SC

BPL01C SVD10: I/O

panel for SVD10 with CVBS

Module:

video processing



Specifications

Serial video i	nput	Analog video o	output
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL (ITU624-4) or NTSC
	259M-C (270Mb/s) with		(SMPTE 170M), Component
	SMPTE 272M embedded audio		and RGB
Number of		Number of	
inputs	1	outputs	3
Equalization	Automatic to 300m @	Connector	BNC
	270Mb/s with Belden 1694A	Signal level	1V nominal
	or equivalent cable	Impedance	75 Ohms
	150m with BPX03	Return loss	> 35dB to 10MHz
Return loss	> 20dB up to 270MHz	Frequency	
		response	0.5dB to 4.5 MHz
SD serial vide	eo output	Differential gain	< 0.6%
Standard	625/50 or 525/59.94 SMPTE	Differential	
	259M-C (270Mb/s) with	phase	< 0.7°
	SMPTE 272M embedded audio	SNR	> 75dB
Number of			
outputs	3	Miscellaneous	
	(1 reclocked and 2 processed)	Weight	Approx. 250g
Signal level	800mV nominal	Operating	
DC offset	0V ±0.5V	temperature	0 °C to +50 °C
Rise/fall time	520ps nominal	Dimensions	137 x 296 x 20 mm (HxWxD
Overshoot	< 10% of amplitude		
Return loss	> 18dB up to 270MHz	Electrical	
Jitter	< 600ps 10Hz HPF	Voltage	+24V to +30V
		Power	<9 Watts

SVD10

307

SVD20 SDI Extended (254 frames) video delay

The SVD20 is an adjustable 254 frames video delay. This delay can be used in an emergency overwrite application where the broadcaster needs to censure live transmissions.

- Adjustable offset delay up to 254 frames
- Adjustment in frames, lines and pixels
- 2 group audio transparency (user selectable)
- Processed embedded audio with the same or minimum delay or blank
- Delay status
- Proc Amp
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

VIDEO DELAY SOLUTIONS

Module:

fiber transmitter on FC/PC BPH01T_SC_SVD20:

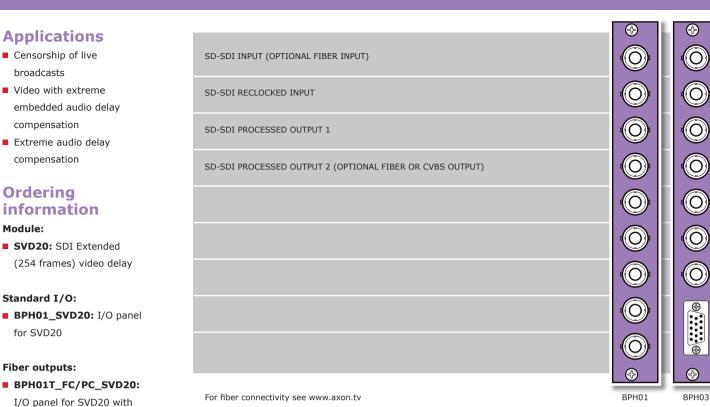
I/O panel for SVD20 with fiber transmitter on SC

BPH01R_FC/PC_SVD20: I/O panel for SVD20 with

fiber receiver on FC/PC BPH01R SC SVD20: I/O panel for SVD20 with

fiber receiver on SC

Fiber inputs:


CVBS output:

BPH01C_SVD20:

CVBS output

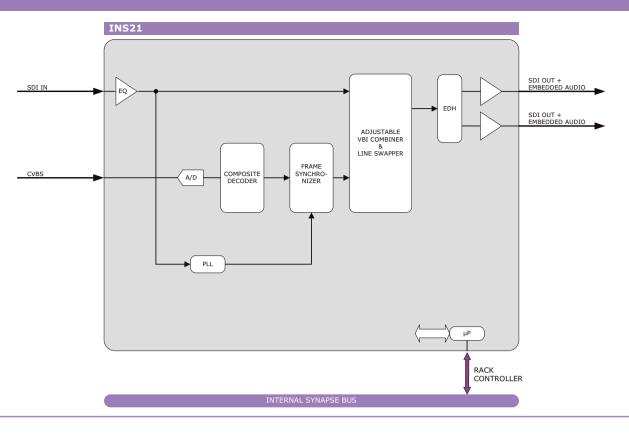
I/O panel for SVD20 with

video processing

Specifications

Serial video input		
Standard	625/50 or 525/59.94 SMPTE	
	259M-C (270Mb/s) with	
	SMPTE 272M embedded audio	
Number of		
inputs	1	
Equalization	Automatic to 200m @	
	270Mb/s with Belden 1694A	
	or equivalent cable	
Return loss	> 15dB up to 270MHz	

SD serial videoutput


ob ochiai thac	oucpue
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	3
	(1 reclocked and 2 processed)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	800ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz

Specifications

Miscellaneous	1
Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts

INS21 VBI line inserter/swapper (data bridge)

The INS21 is a vertical interval (Vertical Blanking) inserter with a composite input and an SDI input and output. VBI (for example Teletext) information present in the composite signal can be inserted into the SDI signal. The INS21 can insert any composite line between line 7 – 22 and line 320 – 335 from the composite domain to any line between line 7 – 22 and line 320 – 335 in the SDI domain. For example, line 7 of the CVBS input can be inserted into line 335 of the SDI signal.

This line exchange is transparent to embedded audio that might be present in the SDI domain.

- Takes any line between 7 and 22 of Field 1 and any line between line 320 and 335 of field 2 of the composite input and inserts it any line between 7 and 22 of Field 1 and any line between line 320 and 335 of field 2 of the SDI domain
- Lines can be swapped, blanked or set transparent.
- Built-in proc-amp
- 2 processed outputs
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

MISCELLANEOUS VIDEO PROCESSING

video processing

 \bigcirc

Applications

 Generic data bridge application where composite domain vertical blanking lines are inserted in the SDI domain

Ordering information

Module:

 INS21: VBI line inserter/ swapper (data bridge)

Standard I/O:

BPL12_INS21: I/O panel for INS21

Fiber outputs:

- BPL12T_FC/PC_INS21: I/O panel for INS21 with fiber transmitter on FC/PC
- BPL12T_SC_INS21: I/O panel for INS21 with fiber transmitter on SC

Fiber inputs:

- BPL12R_FC/PC_INS21: I/O panel for INS21 with fiber receiver on FC/PC
- BPL12R_SC_INS21: I/O panel for INS21 with fiber receiver on SC

CVBS output:

 BPL12C_INS21:
 I/O panel for INS21 with CVBS output

SDI INPUT (OPTIONAL FIBER INPUT)		0
SDI OUTPUT 1		0
SDI OUTPUT 2 (OPTIONAL FIBER OR CVB	BS OUTPUT)	0
CVBS INPUT		\bigcirc
		0
		$\langle \rangle$

For fiber connectivity see www.axon.tv

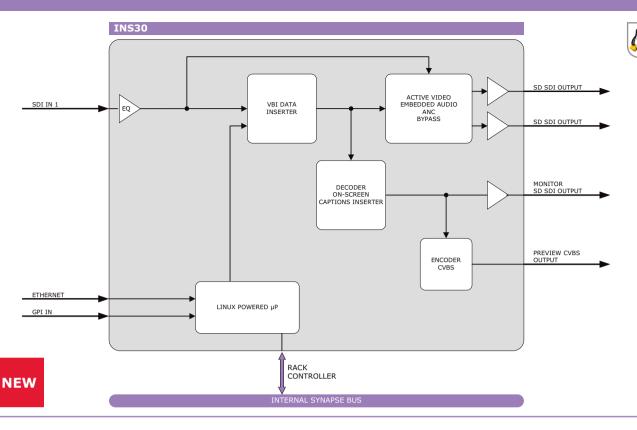
Specifications

Standard	PAL (ITU624-4),
	NTSC (SMPTE 170M)
umber of	
puts	1
npedance	75 Ohms
eturn loss	> 35dB up to 10MHz
equency	
sponse	< ±0.25dB (100KHz to
	4.2MHz)
fferential gain	$< \pm 0.5\%$ typical
fferential	
ase	$< \pm 0.2^{\circ}$ typical
oise floor	< -57dB RMS (black video,
	15KHz to 5MHz)
/L gain	< ±0.5%
/L delay	< ±9ns
inimum delay	3 lines

Serial video input (SDI)

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	1
Equalization	Automatic to 300m
	@ 270Mb/s with Belden
	1694A or equivalent cable
Return loss	> 15dB up to 270MHz

Serial video output


Standard	SMPTE 259M 525/59.95 or
	625/50
Number of	
outputs	2
Connector	BNC
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	900ps nominal
Overshoot	< 10% of amplitude
Return loss	> 15dB to 270MHz
Jitter	< 0.1UI
Miscellaneous	
Weight	Approx. 250g

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)
•	

Electrical

Voltage	+24V to +30V	
Power	<9 Watts	

Powered

INS30 SD Closed Caption and Teletext encoder with monitoring outputs

The INS30 is a standalone card that enables closed caption data to be encoded onto a program feed; it will allow the captions to be previewed on the optional monitoring outputs using an On Screen Display (OSD) to simulate the output of a decoder.

Typically this functionality has been serviced by 1RU box, single PSU solutions from specialist subtitling companies, so the modular INS30 should save on rack space, increase reliability and be more cost effective, certainly in multi-channel applications.

- SD-SDI compatible
- Formats:
 - 625/50
 - 525/59.94
- Insert incoming caption data from the NEWFOR protocol in a parallel WST-B or EIA-608 (line 21) format
- Monitor the encoded signal as 'burnt-in' captions or pages over the program stream on SD and CVBS outputs
- Ability to Clear-Caption in the event of a 'hanging' caption.
- Ethernet connector for Caption and Teletext data input
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

video processing

Applications

The INS30 will typically be used in applications where closed caption subtitling is required on the program stream as part of the play out process. Generally this will be for live captioning where the program material is not available in time for the captions to be pre-prepared and added to the program material as part of the production process.

The subtitle data stream will normally be generated either from a subtitle preparation workstation directly or from a subtitle transmission product.

Ordering information

Module:

INS30: Closed Caption and Teletext encoder with monitor outputs

Standard I/O:

BPH04_INS30: I/O-panel for INS30

BHX04_INS30: I/O-panel for INS30, with relay bypass

Fiber outputs:

BPH04T_FC/PC_INS30: I/O-panel for INS30 with fiber transmitter on FC/PC

BPH04T_SC_INS30: I/O-panel for INS30 with fiber transmitter on SC

Fiber inputs:

- BPH04R_FC/PC_INS30: I/O-panel for INS30 with fiber receiver on FC/PC
- BPH04R_SC_INS30: I/O-panel for INS30 with fiber receiver on SC

	\bigcirc	A
SD SDI INPUT (OPTIONAL FIBER INPUT)	0	
SD SDI PREVIEW OUTPUT	\bigcirc	(O)
SD SDI PROCESSED OUTPUT 1	\bigcirc	(O)
SD SDI PROCESSED OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	(O)-
	\bigcirc	0
CVBS PREVIEW OUTPUT	0	(O)
ETHERNET		
GPI INPUT		
	ا	\bigcirc
For fiber connectivity see www.axon.tv	BPH04	BHX04

Specifications

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of inputs	1
qualization	Automatic to 100m @
	270Mb/s with Belden 1694A
	or equivalent cable
Return loss	> 15dB up to 270MHz
Serial video ou	itput
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
lumber of	
outputs	3 (1 preview and 2 processed)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise and fall time	750ps nominal for SD
Overshoot	< 10% of amplitude
Return loss	> 15dB up to 270MHz
Wideband jitter	< 0.2UI

Analog video output

Standard	PAL (ITU624-4) or NTSC
	(SMPTE 170M), Component,
	YC and RGB
Number of	
outputs	1
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz

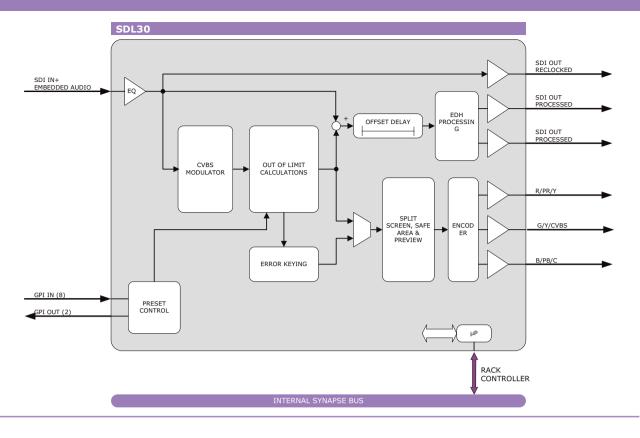
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

thernet

Standard	10Base-T, 100Base-Tx IEEE
	802.3
Connector	8P8C

eference video input

Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal
Impedance	High impedance, with loop
	for termination
Return loss	> 25dB to 10MHz


Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<10 Watts

elay bypas

SDL30 SDI legalizer in the composite domain

The SDL30 is a broadcast quality legalizer that legalizes the digital serial component signal into the composite domain in full 10-bit resolution. Internally the component signal is converted (calculated) to composite to determine the correction factors. Input and outputs are in 10-bit digital serial video (270Mb). And an analog preview monitoring output is provided that shows you before and after processing changes through a split-screen display mode. The analog preview output can also highlight illegal pixels for convenient error determination in a production environment. Different clipping and limitation curves can be selected for both top (Y+C) and bottom (black level) of the signal dynamics. Personal and program determined settings can be stored in 8 presets.

- Functional equivalent of AXON's standalone SDL-3000
- 8 user presetsUpper hard limit (48 to 1633 mV)
 - Upper soft limit (48 to 1633 mV)
 - Upper slope (hard, knee, soft, off)
 - Lower hard limit (-714 to -2 mV)
 - Lower soft limit (-714 to -2 mV)
 - Lower slope (hard, knee, soft, off)
- Horizontal blanking
- Vertical blanking
- Functions
 - YC upper + YC lower
 - Y (only) upper + YC lower
 - C (only) upper + YC lower
- Preview output:
 - Split screen function for pre and post monitoring
 - Adjustable split position
 - Highlight of errors
- Passive back-up relay with BPX03
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel

MISCELLANEOUS VIDEO PROCESSING

video processing

-

18

relay bypass

- 10

Applications

- CVBS transmission legalization
- Post production and graphics legalization
- Education in graphics area

Ordering information

Module:

SDL30: SDI legalizer in the composite domain

Standard I/O:

BPL01_SDL30: I/O panel for SDL30

BPX01_SDL30: I/O panel for SDL30 with relay bypass

BPX03_SDL30: I/O panel for SDL30 with relay bypass, with GPI I/O on sub-D

Fiber outputs:

- BPL01T_FC/PC_SDL30: I/O panel for SDL30 with fiber transmitter on FC/PC
- BPL01T_SC_SDL30: I/O panel for SDL30 with fiber transmitter on SC

Fiber inputs:

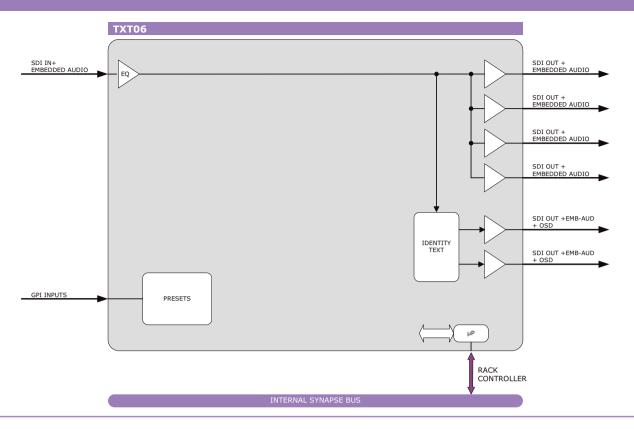
- BPL01R_FC/PC_SDL30: I/O panel for SDL30 with fiber receiver on FC/PC
- BPL01R_SC_SDL30: I/O panel for SDL30 with fiber receiver on SC

SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	\odot		ŀ
SDI RECLOCKED OUTPUT	\bigcirc	\odot	relay bypass	l
SDI PROCESSED OUTPUT 1	\bigcirc	\odot	relay t	l
SDI PROC. OUTPUT 2 (OPTIONAL FIBER OUTPUT)	\bigcirc	0		ł
G/Y/CVBS OUTPUT	\bigcirc	\odot	0	l
B/PB/C OUTPUT	\bigcirc	\odot	Ó	l
R/PR/Y OUTPUT	\bigcirc	\bigcirc	0	l
GPI INPUT/OUTPUT (BPX03 ONLY)	\bigcirc	\bigcirc		l
	\bigcirc	\bigcirc	₩	l
		\bigcirc	€}	
For fiber connectivity see www.axon.tv	BPL01	BPX01	BPX03	

Specifications

Serial video in	nput	Analog video	outp
Standard	625/50 or 525/59.94 SMPTE	Standard	PAL
	259M-C (270Mb/s) with		(SM
	SMPTE 272M embedded audio		and
Number of		Number of	
inputs	1	outputs	3
Equalization	Automatic to 300m	Connector	BNC
	@ 270Mb/s with Belden	Signal level	1V
	1694A or equivalent cable	Impedance	75 (
	150m with BPX03	Return loss	> 3
Return loss	> 20dB up to 270MHz	Frequency	
		response	0.5
SD serial vide	o output	Differential	
Standard	625/50 or 525/59.94 SMPTE	gain	< 0
	259M-C (270Mb/s) with	Differential	
	SMPTE 272M embedded audio	phase	< 0
Number of		SNR	> 7
outputs	3 (1 reclocked and		
	2 processed)	Miscellaneou	s
Signal level	800mV nominal	Weight	Арр
DC offset	0V ±0.5V	Operating	
Rise/fall time	520ps nominal	temperature	0 ° (
Overshoot	< 10% of amplitude	Dimensions	137
Return loss	> 18dB up to 270MHz		
Jitter	< 600ps 10Hz HPF	Electrical	

put


Analog video output			
Standard	PAL (ITU624-4) or NTSC		
	(SMPTE 170M), Component		
	and RGB		
Number of			
outputs	3		
Connector	BNC		
Signal level	1V nominal		
Impedance	75 Ohms		
Return loss	> 35dB to 10MHz		
Frequency			
response	0.5dB to 4.5 MHz		
Differential			
gain	< 0.6%		
Differential			
phase	< 0.7°		
SNR	> 75dB		

D)
:D

Electrical

Voltage	+24V to +30V
Power	<9 Watts

TXT06 OSD identity generator with user definable text

The TXT06 is an Identity generator. It displays a user definable text as source recognition.

- 1 to 4 distribution amplifier
- 2 additional outputs with optional OSD information
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

MISCELLANEOUS VIDEO PROCESSING

video processing

Applications

- Router source identity card.
- Tie Line in use identifier

Ordering information

Module:

 TXT06: OSD identity generator with user definable text

Standard I/O:

- BPL01_TXT06: I/O panel for TXT06
- BPX01_TXT06: I/O panel for TXT06 with relay bypass
- BPX03_TXT06: I/O panel for TXT06 with relay bypass, with GPI I/P on sub-D

Fiber outputs:

- BPL01T_FC/PC_TXT06:
 I/O panel for TXT06 with fiber transmitter on FC/PC
- BPL01T_SC_TXT06: I/O panel for TXT06 with fiber transmitter on SC

Fiber inputs:

 BPL01R_FC/PC_TXT06:
 I/O panel for TXT06 with fiber receiver on FC/PC

 BPL01R_SC_TXT06:
 I/O panel for TXT06 with fiber receiver on SC

CVBS output:

BPL01C_TXT06:

I/O panel for TXT06 with CVBS output

SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc			0
SDI RECLOCKED OUTPUT	\bigcirc		relay bypass	\bigcirc
SDI RECLOCKED OUTPUT	\bigcirc	0	relay t	0
SDI RECLOCKED OUTPUT (OPTIONAL FIBER OR CVBS OUTPUT)	\bigcirc	0		\bigcirc
SDI RECLOCKED OUTPUT	\bigcirc	\bigcirc		\bigcirc
SDI RECLOCKED OUTPUT WITH OSD	\bigcirc	\bigcirc		\bigcirc
SDI RECLOCKED OUTPUT WITH OSD	\bigcirc			\bigcirc
	\bigcirc	\odot		
GPI I/O (BPX03 ONLY)	\bigcirc			
			Γ.	€ €
For fiber connectivity see www.axon.tv	BPL01	BPX01		BPX03

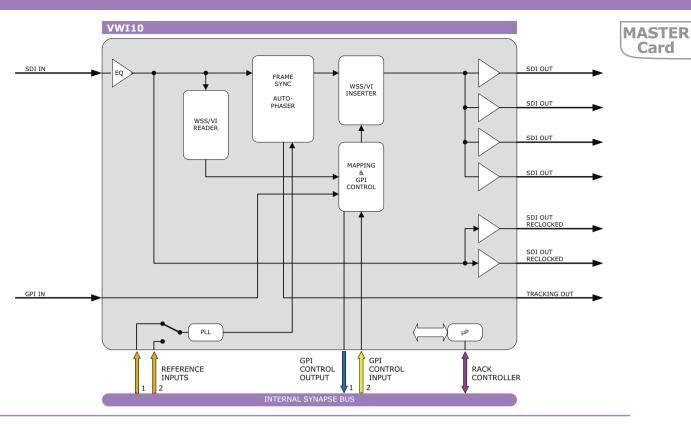
Specifications

Serial video input		
625/50 or 525/59.94 SMPTE		
259M-C (270Mb/s) with		
SMPTE 272M embedded audio		
1		
Automatic to 300m @		
270Mb/s with Belden 1694A		
or equivalent cable		
150m with BPX03		
> 20dB up to 270MHz		

SD serial video output

	•
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	6
	(2 processed and 4 reclocked)
Signal level	800mV nominal
DC offset	0V ±0.5V
Rise/fall time	520ps nominal
Overshoot	< 10% of amplitude
Return loss	> 18dB up to 270MHz
Jitter	< 600ps 10Hz HPF

Miscellaneous


Approx. 250g
0 °C to +50 °C
137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<8 Watts

relay bypass

VWI10 Multi functional frame/line synchronizer with VLI/WSS inserter

The VWI10 is a universal VI and WSS inserter/reader. Video Index and Wide Screen Signaling provide a standardized way of embedding certain legacy information. VI can only be used in the digital environment when the data is serialized and embedded in a low-significance bit of the chrominance during the active part of one line of each field in the vertical blanking interval. The VI information is lost, when going from the digital domain to the analog domain. WSS is designed for the analog domain but can also be used in the digital domain. Since the data is inserted in the first half of line 23, almost all equipment is transparent because it is not in the vertical blanking. Please note that the WSS standard is only developed for the 625-line format.

- Auto detecting of 525/625 with correct reference input selection (SFR08 - SFR18 only)
- Frame synchronizer
- Line synchronizer/autophaser
- Full frame adjustable output phase with respect to reference in sample increments
- EDH processing
- Manual freeze and panic freeze
- 2 individual GPI presets can insert:
 - WSS or WSS-extended
 - WSS embedded GPI
 - VI
- VL PAN, TILT, ZOOM
- WSS insert, standard, extended, blank
- WSS and VI detection
- GPI16 can be used as interface to VWI10
- Transparent for embedded audio
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS outputs (replacing 1 SDI output) on I/O panel

video processing

Applications

- Generic VI and/or WSS inserter/reader
- Transmission PAL-PLUS flag inserter/reader

Ordering information

Module:

VWI10: Multi functional frame/line synchronizer with VLI/WSS inserter

Standard I/O:

BPL01_VWI10: I/O panel for VWI10

BPX01_VWI10: I/O panel for VWI10 with relay bypass

Fiber outputs:

- BPL01T_FC/PC_VWI10: I/O panel for VWI10 with fiber transmitter on FC/PC
- BPL01T_SC_VWI10: I/O panel for VWI10 with fiber transmitter on SC

Fiber inputs:

- BPL01R_FC/PC_VWI10: I/O panel for VWI10 with fiber receiver on FC/PC
- BPL01R_SC_VWI10: I/O panel for VWI10 with fiber receiver on SC

CVBS output:

BPL01C_VWI10: I/O panel for VWI10 with CVBS output

	•	
SDI IN (OPTIONAL FIBER INPUT)	0	\odot
SDI RECLOCKED OUT 1	Ô	\odot
SDI RECLOCKED OUT 2	Ô	\odot
SDI PROCESSED OUT 1 (OPTIONAL FIBER OR CVBS OUT)	0	\odot
SDI PROCESSED OUT 2	0	\odot
SDI PROCESSED OUT 3	0	\odot
SDI PROCESSED OUT 4	0	\odot
TRACKING OUTPUT	0	\odot
FREEZE GPI INPUT	0	\bigcirc
	- ↔	↔

For fiber connectivity see www.axon.tv

Specifications

Serial video input	
Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
inputs	1
Equalization	Automatic to 300m @
	270Mb/s with Belden 1694A
	or equivalent cable
Return loss	> 15dB up to 270MHz

SD serial video output

625/50 or 525/59.94 SMPTE
259M-C (270Mb/s) with
SMPTE 272M embedded audio
6
(2 reclocked and 4 processed)
800mV nominal
0V ±0.5V
800ps nominal
< 10% of amplitude
> 15dB up to 270MHz

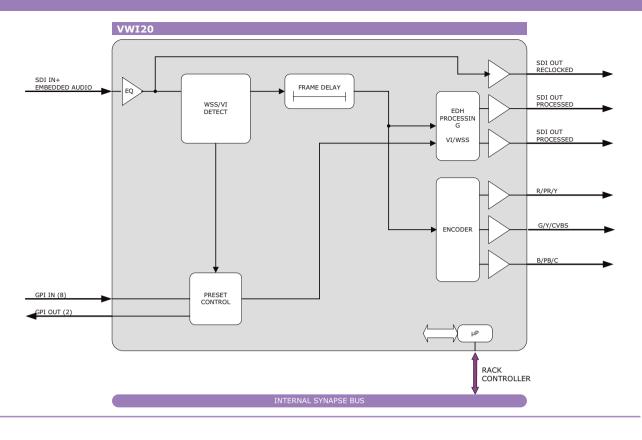
Specifications

Reference video input		
(ITU624-4), NTSC		
TE 170M)		
SFR18, 2 on SFR08,		
SFR04		
ominal		
impedance, with loop		
ermination		
dB to 10MHz		

Miscellaneous

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical


Voltage	+24V to +30V
Power	<7 Watts

BPX01

BPL01

elay bypas:

VWI20 Preset based VI and WSS inserter

The VWI20 inserts VI (Video index) or WSS (wide screen signaling) into a SDI video signal. These VI and WSS values can then be used to pass on the right aspect ratio to other studio equipment, or to set top boxes (WSS only). With the VWI20 you can use presets to translate or adjust existing VI and WSS values and re-insert them in the video signal. Main features are:

- Auto detecting of 525/625 with correct reference input selection (SFR08 - SFR18 only)
- Full frame adjustable output phase with respect to reference in sample increments
- EDH processing
- Translate VI values into a WSS value.
- Presets controllable through 8 local GPI contacts.
- Analog output
- Manual freeze and panic freeze
- WSS insert, standard, extended, blank
- WSS and VI detection
- Transparent for embedded audio
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 and the Ethernet port (ACP)
- Optional 1 fiber input (replacing 1 SDI input) or 1 fiber output (replacing 1 SDI output) on I/O panel
- Optional 1 CVBS output (replacing 1 SDI output) on I/O panel

video processing

n 81

Applications

The applications where a preset based VI/WSS inserter is used:

- Insert VI or WSS values to control Aspect ratio converters or other equipment in studio environment.
- Insert WSS for analog services or setup boxes to follow the correct aspect ratio.
- Convert existing VI or WSS values in a video stream.

Ordering information

Module:

VWI20: Preset based VI and WSS inserter

Standard I/O:

- BPL01_VWI20: I/O panel for VWI20
- BPX03_VWI20: I/O panel for VWI20 with GPI I/O on sub-D

Fiber outputs:

- BPL01T_FC/PC_VWI20: I/O panel for VWI20 with fiber transmitter on FC/PC
- BPL01T SC VWI20: I/O panel for VWI20 with fiber transmitter on SC

Fiber inputs:

BPL01R_FC/PC_VWI20: I/O panel for VWI20 with fiber receiver on FC/PC

BPL01R_SC_VWI20: I/O panel for VWI20 with fiber receiver on SC

CVBS output:

BPL01C_VWI20: I/O panel for VWI20 with CVBS output

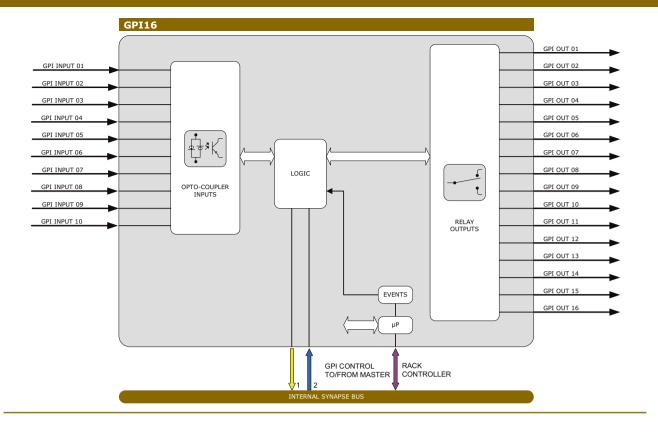
	\bigcirc	•
SDI INPUT (OPTIONAL FIBER INPUT)	\bigcirc	
SDI RECLOCKED OUTPUT 1	\bigcirc	
SDI RECLOCKED OUTPUT 2	\bigcirc	
SDI PROCESSED OUT 1 (OPTIONAL FIBER OR CVBS OUT)		10
C/Y/CVBS OUTPUT		O
B/PB/Y OUTPUT		0
R/PR/C OUTPUT	\bigcirc	0
	\bigcirc	
GPI INPUT/OUTPUT (BPX03 AND BPL08 ONLY)		
	\bigcirc	
For fiber connectivity see www.axon.tv	BPL01	BPX03

For fiber connectivity see www.axon.tv

Specifications

Serial video in	put	Impedance	High impedance, with loop
Standard	625/50 or 525/59.94 SMPTE		for termination
	259M-C (270Mb/s) with	Return loss	> 25dB to 10MHz
	SMPTE 272M embedded audio		
Number of inputs	1	Analog video o	output
Equalization	Automatic to 300m @	Standard	Component and RGB +
	270Mb/s with Belden 1694A		composite
	or equivalent cable	Number of	
Return loss	> 15dB up to 270MHz	outputs	3+sync
		Connector	BNC
SD serial video	ooutput	Signal level	1V nominal
Standard	625/50 or 525/59.94 SMPTE	Impedance	75 Ohms
	259M-C (270Mb/s) with	Return loss	> 35dB to 10MHz
	SMPTE 272M embedded audio	Frequency	
Number of		response	0.5dB to 4.5 MHz
outputs	4	Differential gain	< 0.6%
Signal level	800mV nominal	Differential	
DC offset	0V ±0.5V	phase	< 0.7°
Rise/fall time	800ps nominal	SNR	> 75dB
Overshoot	< 10% of amplitude		
Return loss	> 15dB up to 270MHz	Miscellaneous	
		Weinht	Ammunu 250a

Reference video input


Standard	PAL (ITU624-4), NTSC
	(SMPTE 170M)
Number of inputs	2 on SFR18, 2 on SFR08,
	1 on SFR04
Connector	BNC
Signal level	1V nominal

	for termination
Return loss	> 25dB to 10MHz
Analog video o	utput
Standard	Component and RGB +
	composite
Number of	
outputs	3+sync
Connector	BNC
Signal level	1V nominal
Impedance	75 Ohms
Return loss	> 35dB to 10MHz
Frequency	
response	0.5dB to 4.5 MHz
Differential gain	< 0.6%
Differential	
phase	< 0.7°
SNR	> 75dB

Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<11 Watts

GPI16 Universal GPI card with 10 GPI inputs and 16 GPI outputs

The GPI16 card is a universal Synapse GPI I/O(Input/Output) card. The card is capable of forcing GPI output triggering based on events that are generated by cards located in the same rack. (E.g. An alarm/event generated by any specific card in frame. This alarm/event is put on the bus. The GPI16 card will monitor the internal bus for events and close a relay in case of an event). The GPI16 can also be used as a slave card for Synapse functions, the 8x1 switcher (SDX08) or the VWI10 card for example. In these applications it is possible to control functions directly in to a Master, e.g. GPI based channel selection of the 8x1 switcher SDX08.

- 10 GPI inputs (opto coupled)
- 16 GPI outputs (change-over contacts by electromechanical relays)
- Frame surveillance mode where card events can be mapped to GPI outputs
- Slave mode where GPI in and outputs are mapped directly to card status and settings (SDX08, VWI10, ARC20/21/22, CCR10)
- Frame mode where the card detect events from other cards in the same frame
- Latching and non-latching GPI inputs
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Applications

- GPI alarm monitoring of Synapse events
- GPI to SNMP conversion
 - Where a third party GPI/O only product is integrated via the GPI16 into the Synapse network and/or SNMP system
- GPI to Synapse triggers (with ARC, VWI or SDX cards)

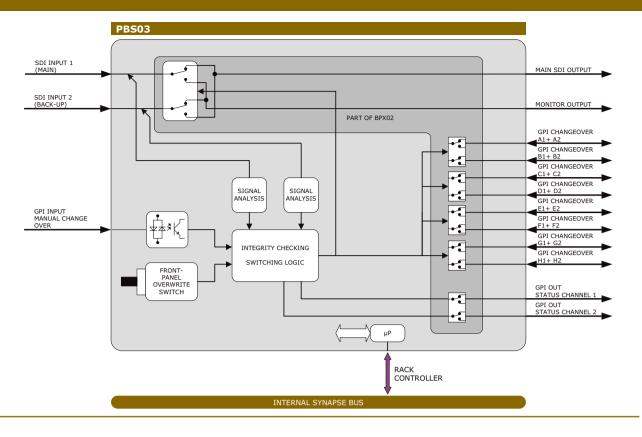
Ordering information

Module:

 GPI16: Universal GPI card with 10 GPI inputs and 16 GPI outputs

Standard I/O:

 BPL06_GPI16: Rear connector panel for GPI16


	S
GPI INPUTS	
	_ @
GPI OUTPUTS	
	•
GPI OUTPUTS	
	Ð

BPL06

Specifications

GPI I/O		Miscellaneous	
Inputs	Opto coupled	Weight	Approx. 250g
Number of		Operating	
inputs	10	temperature	0 °C to +50 °C
outputs	Relay based with	Dimensions	137 x 296 x 20 mm (HxWxD)
	change-over contacts		
Number of		Electrical	
outputs	16	Voltage	+24V to +30V
		Power	<5 Watts

PBS03 Dual channel relay based back-up switcher with signal integrity checking

The PBS03 is a dual channel digital SD-SDI change-over back-up switch with integrity checking. The PBS03 has 2 SDI inputs to 2 outputs. The loop-through input is high impedance and must be terminated in 75 Ohms when not used. The cross-switching can be executed by several signal analysis triggers. These triggers are loss of input, loss of embedded audio, freeze frame, TRS errors or any combination of these.

- Electromechanical Relay based switching on connector panel for optimal reliability (even when the probing card is removed)
- 2 SDI inputs
- 2 SDI outputs
- Switching triggers based on:
 - GPI
 - Carrier loss
 - TRS error
 - Audio silence
 - Freeze detection
 - Event (an event triggered by a different card in the same frame)
- Automatic switching (with control of back-up channel)
- Freeze length and threshold adjustments
- Silence time and threshold adjustment
- 8 fully wired alternated relay based switches (suitable for AES/ EBU and analog audio)
- Cable length up to 100 meter
- Automatic (signal quality controlled) switching
- GPI based switching
- Manual overwrite on front panel switch
- Channel 'OK' indication by GPI output
- Full control and status monitoring through the front panel of the SFR04/SFR08/SFR18 frame and the Ethernet port (ACP)

Applications

- Ultra reliable transmission output back-up switch
- Truck output bypass switch

Ordering information Module:

PBS03: Dual channel relay based back-up switcher with signal integrity checking

Standard I/O:

- BPX02_PBS03:
 - I/O panel for PBS03

SDI MAIN INPUT	Ó
SDI BACK-UP INPUT	Ó
SDI MONITOR OUTPUT (TERMINATE WHEN NOT IN USE)	Ó
SDI MAIN OUTPUT	Ó
GPI INPUT/OUTPUT	
GPI INPUT/OUTPUT	
	() () ()

For detailed sub-D connections see the manual

BPX02

Specifications

Serial video input		GPI input/c
Standard	625/50 or 525/59.94 SMPTE	Connector
	259M-C (270Mb/s) with	Number of
	SMPTE 272M embedded audio	connectors
Number of		Number of
inputs	2	GPI inputs
Equalization	Automatic to 100m	Type of input
	@ 270Mb/s with Belden	Number of
	1694A or equivalent cable	GPI outputs
Return loss	> 15dB up to 270MHz	Type of outpu

SD serial video output

Standard	625/50 or 525/59.94 SMPTE
	259M-C (270Mb/s) with
	SMPTE 272M embedded audio
Number of	
outputs	2
Signal level	As input
DC offset	As input
Rise/fall time	As input
Overshoot	As input
Return loss	> 15dB up to 270MHz

output

Connector	26 pins female sub-D
Number of	
connectors	2
Number of	
GPI inputs	10
Type of inputs	Opto coupled
Number of	
GPI outputs	16
Type of outputs	relay

Miscellaneous

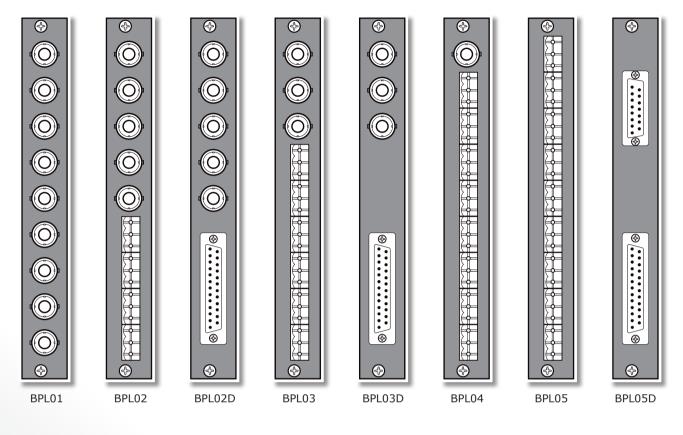
Weight	Approx. 250g
Operating	
temperature	0 °C to +50 °C
Dimensions	137 x 296 x 20 mm (HxWxD)

Electrical

Voltage	+24V to +30V
Power	<6 Watts

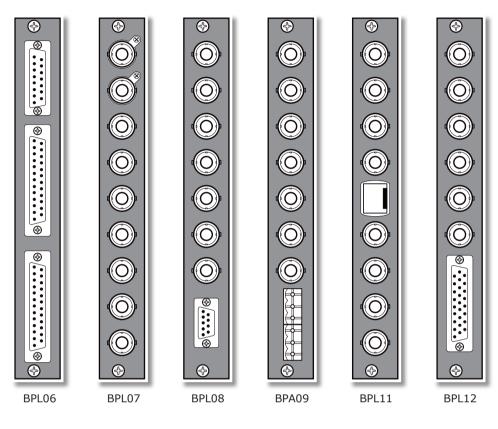
Alphabetical index of products

Page(s)

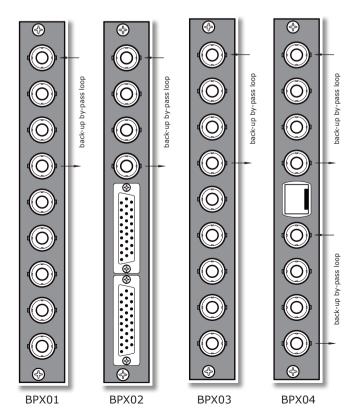

_		-	
2AS11		Dual channel 12-bit composite decoder with 5 line comb filter	162
2AS12		Dual channel 12-bit composite decoder with 5 line comb filter and frame synchronizer	164
2DB22		Dual 4 channel digital audio de-embedder	86
2DB24		Dual 4 channel analog audio de-embedder	88
2EB22		Dual 4 channel digital audio embedder	68
2EB22		Dual 4 channel analog audio embedder	70
		5	
2FS10		Dual channel frame synchronizer	206
2HS10		Dual channel high-end HD-SDI to SD-SDI/composite down converter with de-embedding function	248
2HS11		Dual channel high-end HD-SDI to SD-SDI/composite down converter with embedding function	250
2HU10 -	2HU11	Dual channel HD up-converter with color corrector	266
2HX10		Dual channel HD/SD integrity checking probe with clean switch over function and wings or split screen creation capabilities	226
2IM09 -	2IM10	Dual channel (enhanced) integrity checking probe with built-in frame synchronizers	228
2IX08		Dual channel basic integrity checking probe with switch-over function	230
2IX09 -	21V10	Dual channel (enhanced) integrity checking probe with switch-over function and frame synchronizer	232
	21/10		
AAD08		Dual channel 1 to 8 analog audio distribution amplifier	52
ADC20		4 channel Analog audio input Synapse ADD-ON card	60
ADC24		4 channel 24-bit audio A/D converter with AES/EBU bypass inputs	62
ADL24		Analog audio tracking delay with offset	134
ADP24		Audio description and voice-over processing card	136
ADP10		Audio description processor for SDI embedded audio	104
ARC10		Basic aspect ratio converter, 10-bit, horizontal scaling only	190
ARC15		high-end bi-directional manual controlled aspect ratio converter with digital and analog outputs	192
ARC20		High-end bi-directional aspect ratio converter with digital and analog outputs	196
ARC21		Full feature bi-directional aspect ratio converter, digital and analog outputs, with serial video offset delay	198
ARC22		High-end bi-directional aspect ratio converter, digital and analog outputs, with de-embedder	200
ASC12		Component (near CCIR601) or RGB to SDI converter	166
ASM08		Analog to digital A/V converter with composite or component input capability	168
ASM10		Analog to digital A/V (12 bit) bridge with SDI & embedded audio bypass/processing input	170
ASV08		Standard quality composite decoder with 4 SDI outputs	172
ASV12		High-end CVBS decoder (12 bit) with 5 line comb filter, frame synchronizer and 2 group embedder	174
ASV22		High-end CVBS decoder with 5 line comb filter and frame synchronizer and SDI bypass input	176
CCR10			202
		SDI preset based color corrector with frame synchronizer	
CCR20		SDI preset based color corrector with frame synchronizer and enhancement engine	204
CDV07		Analog video (B&B / Tri-Level) distribution amplifier (word clock DA for high impedance circuits)	54
CDV08		Analog video distribution amplifier with cable equalizer	56
CDV29		Reference (B&B / Tri-Level) distribution amplifier with 9 outputs and Synapse reference inputs	58
DAC20		4 channel Analog audio output ADD-ON card	64
DAC24		4 channel 24-bit audio D/A converter with AES/EBU outputs	66
DAD08 -		Digital (AES/EBU) audio distribution amplifier (08 has transformer coupled outputs)	144
DAD26	DIECOS	Dual channel digital (AES/EBU) audio distribution amplifier with 2x2 and 2x1 function	146
DAD20 DAS24			
		4 channel (2 x AES/EBU) digital audio mixing and shuffle module	138
DBD08		Dolby E and Dolby Digital Decoder stand alone or ADD-ON card	126
DBE08		Dolby E Encoder stand alone or ADD-ON card	128
DDB10		SD Dolby E de-embedder	90
DDE51		Dolby Digital Pro encoder	130
DDP14 -	DDP84	Multi stream Dolby Digital Plus and Pro encoder with Dolby E decoder (DDP84 only)	132
DIO24		4 channel digital audio sample rate converter, tracking (and offset) delay - ADD-ON card	140
DI048		8 channel digital audio (192kHz) sample rate converter, tracking (and offset) delay - ADD-ON card	142
GDR26		3Gbit/s dual input distribution amplifier with 3 reclocked outputs per channel (ASI/DVB compatible)	148
	- GDS110 -		110
	- HDS110	3Gb/s, HD, SD down converter/synchronizer with optional audio shuffler	252
		Solys, no, so down converter/synchronizer with optional additio shuffler	252
	- GFS110 -		
	- HFS110	3Gb/s, HD, SD frame synchronizer with optional audio shuffler	208
GQW200) - HQW200		
SQW200)	Triple rate SDI quad split/multiview building block	292
GPI16		Universal GPI card with 10 GPI inputs and 16 GPI outputs	322
GSU100	- GSU110 -		
	- HSU110	3Gb/s, HD, SD up converter/synchronizer with optional audio shuffler	254
	- GSU160 -		
	- HSU160	2Ch/c HD SD up converter/synchronizer with side surtain input and entional audio chuffler	256
		3Gb/s, HD, SD up converter/synchronizer with side curtain input and optional audio shuffler	200
	- GXG110 -		252
	- HXH110	3Gb/s, HD, SD up/down/cross converter/synchronizer with optional audio shuffler	258
	- GXG160 -		
HXH150	- HXH160	3GB/s, HD, SQ up/down/cross converter/synchronizer with side curtain conversion and optional audio shuffler	260
HAS10		HD/SD 8-channel 2-group embedded audio processing card with presets	106
HAS20		HD/SD 8-channel 2-group embedded audio processing card with local AES/EBU inputs	108
HAS30		HD/SD 16-channel 4-group embedded audio shuffler card with presets	110
HAC08		HD/SD monitoring D/A converter (component outputs)	178
HCL10		HD/SD embedded audio compressor/limiter	120
HDB20		HD/SD preset based audio compressor/initial	92
IIDDZU		They see preser based audio determined del	92

HDD10	HD/SD Dolby E de-embedder (master card)	94
HDE10	HD/SD Dolby E/Dolby Digital embedder	74
HDR07	HD reclocking distribution amplifier	150
HDR09	HD dual input 1 to 3 reclocking distribution amplifier	152
HDS10	Premium quality HD-SDI to SD-SDI down converter with frame-synchronizer	262
HDS20 - HDS21	High performance HD-SDI to SD-SDI Down converter	264
HDW10	HD/SD SDI to WXGA converter on VGA and DVI	294
HES20	HD/SD embedded Dolby E alignment engine / frame synchronizer	112
HEB20	Dual HD/SD preset based audio embedder	72
HFS10	HD/SD frame synchronizer with smart audio handling for 2 groups	210
HFS11	HD/SD frame synchronizer with audio embedding for 2 groups	212
HFS12	HD/SD frame synchronizer with audio de-embedding of 16 channels	214
HFS15	HD/SD frame synchronizer with color corrector and smart audio handling	216
HIM10	HD/SD integrity checking/probe with audio and phase OSD bar-graph insertion	234
HLI20 - SLI20	HD/SD preset based dual logo inserter	244
HQW10	HD (1)/SD guad split to WXGA converter on VGA and DVI with HD-SDI single channel display capabilities	296
-		
HQW15	HD/SD quad split to WXGA converter on VGA and DVI with full-screen display capabilities	298
HSU10	HD up-converter with color corrector	268
HSU11	HD up-converter with color corrector and 2 group embedder	270
HSU20 - HSU21	High performance HD-SDI upconverter	272
HSU30 - HSU31	High performance HD-SDI upconverter with enchanced noise reduction	274
HTI10	HD/SD-SDI preset based text inserter	246
HVD10	HD video delay (31 frames)	304
HVO10	HD/SD Voice Over inserter/embedder	122
HXH10	HD-SDI cross converter between 1080i and 720p	276
HXH20 - HXH21	High performance Up, Down and Cross converter	278
HXH30 - HXH31	High performance HD standards converter	280
HXH40 - HXH41	High performance HD Up/Down/Cross & Standards converter	282
HXT10	Dual HD input, frame synchronizer, down converter, embedder, CVBS encoder	284
HXT12	Dual HD input, frame synchronizer, down converter with embedder, de-embedder and CVBS encoder	286
INS21	VBI line inserter/swapper (data bridge)	310
INS30	SD Closed Caption and Teletext encoder with monitoring outputs	312
PBS03	Dual channel relay based back-up switcher with signal integrity checking	324
SAM08	Distribution amplifier with monitoring analog audio and video outputs	180
SAM10		180
	Digital to analog A/V bridge with SDI processed outputs	
SAS10	SD 4 channel into one group embedded audio shuffler/mixer	114
SAS20	SD 8 channel into one group embedded audio + ADD-ON input shuffler/mixer	116
SAS30	SD 2 group GPI (preset) triggered SDI embedded audio shuffler	118
SAV08	Distribution amplifier with Analog video outputs	184
SAV38	Triple monitoring D/A converter (composite or Y/C outputs)	186
SCV12	High-end 12 bit SDI to composite/component/RGB encoder with frame synchronizer	188
SDB10	SD (2 AES/EBU) digital audio de-embedder with 8 extra channels through the ADD-ON bus	96
SDB15	SD 4 channel analog audio de-embedder with 8 extra channels through the ADD-ON bus	98
SDB20	SD 4 channel analog audio and digital audio de-embedder with 8 extra channels through the ADD-ON bus	100
SDE10	SD Dolby E/Dolby Digital embedder	76
SDL30	SDI legalizer in the composite domain	314
SDN08 - SDR08	SD-SDI (Non=N) reclocking distribution amplifier (ASI/DVB compatible)	154
SDN09 - SDR09	SD-SDI (Non=N) reclocking dual channel distribution amplifier (ASI/DVB compatible)	156
SDR07	SD-SDI triple channel reclocking distribution amplifier (ASI/DVB compatible)	158
SDX08	8 SD-SDI to 1 SD-SDI switcher	160
SDW10	SDI to WXGA converter on VGA and DVI	300
SEB10	SD-SDI 4 channel (2 AES/EBU) digital audio embedder	78
SEB11	SD-SDI 4 channel (2 AES/EBU) digital audio embedder with 4 channel de-embedder, re-insertion unit	80
SEB15	SD-SDI 4 channel analog audio embedder	82
SEB20	SD-SDI 4 channel analog Audio and digital Audio embedder	84
SFR04 - SFR08 - SFR 18	19" rack frames, 4, 8 and 18 slots	50
SFS10 - SFS20	Multi functional frame/line synchronizer with smooth emb. audio processing (10:1 group, 20:2 groups)	218
SFS11 - SFS21	Multi functional frame/line synchronizer with embedding function (11: 2 groups, 21: 4 groups)	220
SFS12 - SFS22	Multi functional frame/line synchronizer with de-embedding function (12: 2 groups, 22: 4 groups)	222
	SDI distribution amplifier checking and monitoring signal integrity (with OSD)	236
SIM10 SIM11		238
SIM11	SDI distribution amplifier checking and monitoring signal integrity (with OSD) + subtitle decoding	
SIM21	SDI hearing aid subtitles decoder and inserter keyer from Teletext based subtitles	240
SPS20	SD-SDI Multi functional frame/line synchronizer with full embedded audio processing	224
SQW10	SDI quad split to WXGA converter on VGA and DVI	302
SVD10	Universal frame synchronizer with extended (24 frames) video delay offset and monitoring D/A converter	306
SVD20	SDI Extended (254 frames) video delay	308
SXS20 - SXS21	High performance SD standards converter	288
TXT06	OSD identity generator with user definable text	316
VWI10	Multi functional frame/line synchronizer with VLI/WSS inserter	318
VWI20	Preset based VI and WSS inserter	320

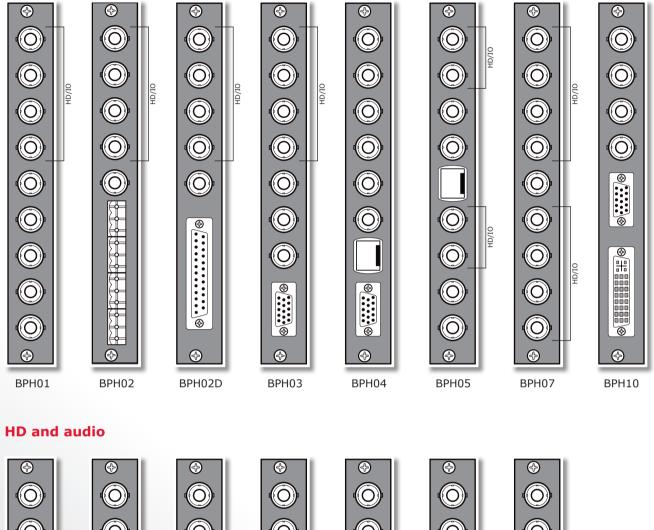
Synapose

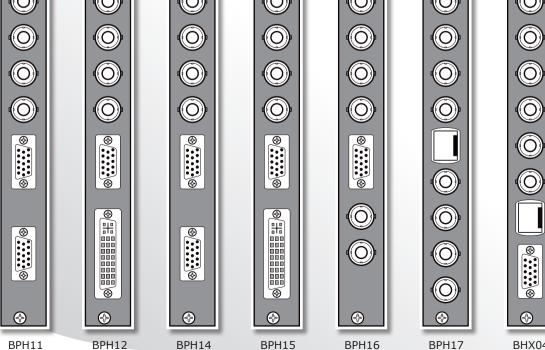

Connector Panels

SD and audio

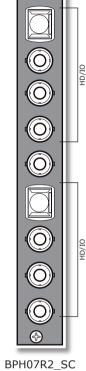


SD and audio

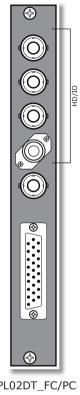


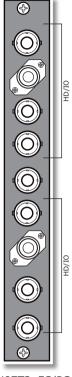

SD and audio

HD and audio



BPH11


Some fiber optic examples



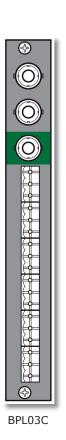
 (\mathcal{F})

BPL01R2_SC

BPL02DT_FC/PC

BPL02DT_FC/PC

BPL08R_FC/PC


BPH07T2_FC/PC

Some examples of CVBS outputs

BPL01C

BPL02C

Disclaimer August 2008

Due to constant product research and development all specifications are subject to change without notice. Axon Digital Design BV does not warrant or assume any legal liability or responsibility for the accuracy, completeness, availability and/or delivery of the products and/or services listed in this catalog. Dolby, Dolby E, Dolby Digital, Dolby Digital Plus and the double-D symbol are registered trademarks of Dolby Laboratories. Copyright © 2008 Axon Digital Design BV.

The Netherlands (headquarters): AXON B.V.

Office:	Lange Wagenstraat 55
	5126 BB Gilze, The Netherlands
Phone:	+31 (0)161 85 04 50
Fax:	+31 (0)161 85 04 99
Email:	info@axon.tv
Internet:	www.axon.tv

United Kingdom: AXON LTD.

Office:	1 Forest Court,
	Oaklands Park
	Wokingham Berkshire,
	RG41 2FD United Kingdom
Phone:	+44 118 974 0480
Fax:	+44 118 978 3248
Email:	info-uk@axon.tv
Internet:	www.axon.tv

China:

CHINA REPRESENTATIVE OFFICE

Office:	Room 804, 2nd Department, No. 1
	, ,
	Building Beijing Image,
	No. 115
	Fucheng Road
	Haidian District,
	100036 Beijing, China
Phone:	+86 10 8814 4199
Fax:	+86 10 8814 4199
Email:	info-cn@axon.tv
Internet:	www.axon.tv

Committed.